- •1. Основные определения и понятия термодинамики
- •2. Параметры состояния и уравнения состояния.
- •3.Термодинамическая и потенциальные работы, координаты p-V
- •4. Теплоемкость. Определение теплоемкости веществ.
- •5. Математическое выражение 1го начала термодинамики
- •6.Первое начало термодинамики по балансу рабочего тела
- •7. Аналитическое выражение первого начала термодинамики
- •8. Первое начало термодинамики для идеального газа.
- •9. Принцип существования энтропии идеального газа.
- •10. Процессы изменения состояния (изобара, изохора, изотерма и адибата)
- •11. Политропа с постоянным показателем.
- •12. Работа в термодинамических процессах простых тел (изобара, изохора, изотерма и адиабата)
- •13. Теплообмен в термодинамических процессах простых тел (изобара, изохора, изотерма и адиабата)
- •14. Процессы изменения состояния идеальных газов.
- •15. Работа и теплообмен в политропных процессах идеальных газов.
- •16. Круговые процессы. Кпд и холодильный коэффициент.
- •17. Обратимый цикл Карно.
- •18. Математическое выражение второго начала термостатики. Основные следствия.
- •19. Математическое выражение второго начала термодинамики. Основные следствия.
- •20. Смеси жидкостей, паров и газов, расчет характеристик смеси веществ. Схемы смещения.
- •21. Истечение жидкостей и газов. Основные расчётные соотношения.
- •22.Особенности истечения сжимаемой жидкости. Кризис истечения. Режимы истечения.
- •23.Переход через критическую скорость (сопло Лаваля).
- •24. Особенности истечения через каналы переменного сечения, сопло и диффузор.
- •25. Дросселирование. Эффект Джоуля-Томсона. Основные понятия
- •26. Процессы парообразования, определение параметров насушенного пара, диаграмма h-s.
- •27. Термодинамические циклы и кпд гту.
- •28.Термодинамические циклы и кпд поршневых двс.
- •29. Теплопроводность. Закон Фурье. Коэффициент теплопроводности
- •30. Дифференциальное уравнение теплопроводности. Условия однозначности
- •31. Теплопроводность через однослойные стенки (плоские, цилиндрические).
- •32 Теплопроводность через многослойные стенки (плоские, цилиндрические)
- •33.Теплоотдача. Закон Ньютона-Рихмана. Коэффициент теплоотдачи. Критериальные уравнения.
- •34. Теплообмен излучением. Основные законы.
- •35. Теплообмен излучением между телами.
- •36. Теплопередача. Основное уравнение теплопередачи. Коэффициент теплопроводности.
- •37. Теплопередача через плоскую однослойную и многослойную плоскую стенку
- •38. Теплопередача через криволинейные однослойные и многослойные стенки.
- •39.40. Оптимизация процессов теплопередачи. Способы интенсификации теплопередачи.
- •41,43. Теплопередача при переменных температурах. Средняя разность температур.
- •44. Расчет теплообменный аппаратов первого рода.
- •45. Расчет теплообменный аппаратов второго рода.
- •46. Паросиловые установки, цикл Ренкина, методы повышения кпд.
- •48. Воздушные холодильные машины.
- •49. Рабочий процесс двухтактного и четырехтактного двигателя внутреннего сгорания.
- •50. Индикаторные и эффективные характеристики двигателей внутреннего сгорания
- •51. Рабочий процесс и характеристики гту.
21. Истечение жидкостей и газов. Основные расчётные соотношения.
В общем случае процессы истечения удобно рассматривать как теоретические обратимые процессы истечения: политропный или адиабатный, а переход к реальным процессам осуществлять путем введения соответствующих поправочных коэффициентов, определяемых опытным путем
Основной задачей при изучении процессов истечения является определение линейной (с) и массовой скорости (и), расхода (G), параметров и функций состояния рабочего тела (p, v, t, u, h, s) вдоль канала.
Общие соотношения
При обратимых процессах истечения жидкости из области большего давления р1 в область с меньшим давлением р2, потенциальная работа расходуется на повышение кинетической энергии и на изменение высоты центра тяжести потока

Д![]()
ифференциальное
уравнение распределения удельной
потенциальной работы, при отсутствии
эффективной потенциальной работы потока
( ), будет выглядеть следующим
образом
![]()
Отсюда теоретическая линейная скорость истечения жидкости в выходном сечении сопла (с2)
![]()
С
опла
или штуцеры, через которые происходят
процессы истечения, обычно выполняются
короткими, поэтому работой, идущей на
изменение центра тяжести поток,
можно пренебречь. При этом условии теоретическая линейная скорость истечения жидкости в выходном сечении сопла может быть определена из соотношения
![]()
Скорость потока на входе в сопло может быть вычислена, в свою очередь, как теоретическая скорость истечения из воображаемого нулевого состояния (точка 0), в котором жидкость находится в состоянии покоя (с0=0), до заданного начального состояния (1), линейная скорость потока во входном сечении сопла определяется по формуле
![]()
С
умма
потенциальных работw0,1
и w1,2,
представляет собой потенциальную работу
жидкости (сжимаемой или несжимаемой) в
обратимом адиабатном процессе истечения
от нулевого состояния (с0
=0), определяемого
параметрами торможения, до конечного
давления p2
( ).
Следовательно, соотношение для определения линейной теоретической скорости обратимого адиабатного процесса истечения жидкости можно записать следующим образом
![]()
Важной характеристикой потока является его массовая скорость, численно равная секундному расходу жидкости через единицу площади поперечного сечения потока
( и, кг/(м2×с))
Связь между массовой и линейной скоростью
![]()
В соответствии с принципом неразрывности потока, массовый расход вещества (G) в любом поперечном сечении канала одинаков
![]()
Истечение несжимаемых жидкостей
Н
есжимаемая
жидкость имеет практически неизменную
плотность при любых давлениях и
температурах. Соотношения для определения
удельной потенциальной работы несжимаемой
жидкости в обратимых процессах истечения
Т
еоретическая
линейная скорость истечения несжимаемой
жидкости в выходном сечении сопла (с2)
М
ассовая
скорость потока несжимаемой жидкости
на выходе из сопла
Из соотношений видно, что с увеличением по длине канала (x) разности давления (р0 - рx), повышается массовая скорость потока. При этом, исходя из принципа неразрывности потока (G = idem), площадь проходного сечения канала, должна непрерывно уменьшаться. Следовательно, при истечении несжимаемой жидкости следует применять суживающиеся сопла.
