Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1й курс / матем / Аверина-О.В.-Методическое-пособие-теория-вероятности.doc
Скачиваний:
58
Добавлен:
21.03.2015
Размер:
538.62 Кб
Скачать

Глава 3. Некоторые законы распределения непрерывной случайных величин.

§1. Равномерный закон распределения

Определение: Непрерывная случайная величина Х имеет равномерный закон распределения на некотором интервале (а;b), которому принадлежат все возможные значения Х, если плотность распределения вероятностей f(x) постоянная на этом интервале и равна 0 вне его, т.е.

0 при х≤а,

f(х)= приa<х<b,

0 при х≥b .

График функции f(x) изображен на рис. 1

(рис. 1) (рис.2)

Функция распределения случайной величины Х, распределенной по равномерному закону, задается формулой:

0 при х≤а,

F(х)= приa<х≤b,

0 при х>b.

Ее график изображен на рис. 2.

Числовые характеристики случайной величины равномерно распределенной на интервале (a;b), вычисляются по формулам:

M(Х)=,D(X)=, σ(Х)=.

Задача№1. Случайная величина Х равномерно распределена на отрезке [3;7]. Найти:

а) плотность распределения вероятностей f(x) и построить ее график;

б) функцию распределения F(x) и построить ее график;

в) M(X),D(X), σ(Х).

Решение: Воспользовавшись формулами, рассмотренными выше, при а=3, b=7, находим:

0 при х<3,

а)f(х)= при 3≤х≤7,

0 при х>7

Построим ее график (рис.3):

рис.3

б) 0 при х≤3,

F(х)= при 3<х≤7,

1 при х>7 .

Построим ее график (рис.4):

рис.4

в) M(X) = ==5,

D(X) = ==,

σ (Х) = ==.

§2. Показательный (экспоненциальный) закон распределения

Определение: Непрерывная случайная величина Х имеет показательный (экспоненциальный) закон распределения с параметром λ>0, если функция плотности распределения вероятностей имеет вид:

0 при х<0,

f(х)= λе-λх при х≥0.

Функция распределения случайной величины Х, распределенной по показательному закону, задается формулой:

0 при х≤3,

F(х)= 1-e-λх при х≥0.

Кривая распределения f (х) и график функции распределения F(х) случайной величины Х приведены на рис.5 и рис.6.

рис.5 рис.6

Математическое ожидание, дисперсия и среднее квадратическое отклонение показательного распределения соответственно равны:

M(X)= , D(X)=, σ (Х)=

Таким образом, математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Вероятность попадания Х в интервал (a;b) вычисляется по формуле:

Р(a<Х<b)= e-λа- e-λb

Задача №2. Среднее время безотказной работы прибора равно 100 ч. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:

а) плотность распределения вероятностей;

б) функцию распределения;

в) вероятность того, что время безотказной работы прибора превысит 120 ч.

Решение: По условию математическое распределение M(X)==100, откуда λ=1/100=0,01.

Следовательно,

0 при х<0,

а)f(х)= 0,01е -0,01х при х≥0.

б)F(x)= 0 при х<0,

1- е -0,01х при х≥0.

в) Искомую вероятность найдем, используя функцию распределения:

Р(X>120)=1-F(120)=1-(1- е -1,2)= е -1,2≈0,3.

Соседние файлы в папке матем