Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Молекулярная биология клетки. Том 1

.pdf
Скачиваний:
465
Добавлен:
20.03.2015
Размер:
26.84 Mб
Скачать

371

Рис. 6-31. Структура молекулы родопсина и ее расположение в липидном бислое. Полипептидная цепь пересекает бислой в виде семи α-спиралей. (По данным R. Henderson и R.N.T. Onwin, Nature, 257, 28-32, 1975.)

методами рентгеноструктурного анализа кристаллов белка. Однако из-за амфипатической природы мембранных белков их чрезвычайно трудно кристаллизовать. Это удалось сделать лишь в 1985 году при изучении фотосинтезирующего реакционного центра у бактерий методами рентгеноструктурного анализа. Впервые было показано, как множество полипептидов могут ассоциировать в мембране, образуя сложную белковую машину.

6.2.8. Четыре различных полипептидных цепи в мембраносвязанном комплексе образуют фотосинтезирующий реакционный центр у бактерий [15]

В гл. 3 шла речь о том, что различные полипептиды ассоциируют, образуя большие мультиферментные комплексы, которые с высокой эффективностью катализируют сложные реакции благодаря кооперативной работе субъединиц. Аналогичные комплексы белков обнаружены и в мембранах. Наиболее изучен среди них бактериальный фотосинтезирующий реакционный центр. Этот белковый комплекс находится в плазматической мембране пурпурных фотосинтезирующих бактерий Rhodopseudomonas viridis. Он использует поглощенную энергию света для создания электрона с высокой энергией, позволяющей ему пересекать мембрану быстрее чем за наносекунду. Затем электрон переходит к другим переносчикам электронов, находящимся в мембране, которые используют часть энергии, высвобождаемой в процессе электронного транспорта для синтеза АТР в цитозоле. Реакционный центр построен из четырех различных полипептидов: L, М, Н и цитохрома. Для изучения трехмерной пространственной структуры этот комплекс был солюбилизирован в растворе детергента, закристаллизован в виде комплекса белков с детергентом и изучен методом рентгеноструктурного анализа. Как оказалось, реакционный центр содержит четыре молекулы хлорофилла и восемь других коферментов, переносящих электроны. В гл. 7 мы будем говорить о том, что для понимания фотосинтеза очень важным оказалось установление точного положения каждого из коферментов в комплексе. Не менее значимым (в большой степени относящимся к теме данной главы) событием стало выяснение организации четырех белковых субъединиц в трансмембранном комплексе. Субъединицы L и М гомологичны и состоят каждая из пяти α-спиралей, пронизывающих липидный бислой плазматической мембраны (рис. 6-32). Эти две субъединицы образуют гетеродимер, представляющий собой ядро реак-

372

Рис. 6-32. Структура фотосинтезирующего реакционного центра бактерий Rhodopseudomonas viridis по данным рентгеноструктурного анализа кристаллов трансмембранного белкового комплекса. Белковый комплекс состоит из четырех субъединиц: L, М, Н и цитохрома. Субъединицы L и М образуют ядро реакционного центра. Каждая из субъединиц L и М содержит по 5 α-спиралей, пересекающих бислой. Положение коферментов-

переносчиков электронов показано цветом. (Изображено J. Richardson по работе Deisenhafer et al. Nature. 318, 618-624, 1985.)

ционного центра: 10 его α-спиралей окружают переносчиков электрона. Субъединица Н имеет лишь одну трансмембранную α-спираль, а остальная часть полипептидной цепи уложена в виде глобулярного домена, находящегося на цитоплазматической стороне мембраны, где он связан с L-М- гетеродимером. Цитохром представляет собой периферический мембранный белок, связанный с гетеродимером L-H на внешней стороне мембраны

(см. рис. 6-32).

Две «дополнительных» субъединицы (Н и цитохром) сильно увеличивают эффективность фотосинтетической реакции, катализируемой, в общем-то, гетеродимером L-М: цитохром снабжает гетеродимер электронами, а субъединица Н предположительно объединяет реакционный центр со множеством белков. Гетеродимер L-М эволюционно оказался очень консервативным белком, по-видимому, пара тесно связанных между собой белков образует ядро одного из фотосинтезирующих реакционных центров в зеленых растениях.

6-15 6.2.9. Многие мембранные белки диффундируют в плоскости мембраны [16]

Мембранные белки так же, как и мембранные липиды, не могут перескакивать с одной стороны бислоя на другую (такой перескок

носит

373

Рис. 6-33. Схема эксперимента, демонстрирующего перемешивание белков плазматической мембраны в клеточных гибридах мышь-человек. Белки мыши и человека первоначально располагаются на своих собственных половинах новообразованной плазматической мембраны гетерокариона, но со временем перемешиваются. Для визуализации белков использовали два вида антител, меченных разными лигандами. (В флуоресцентном микроскопе флуоресцеин имеет зеленый цвет, а родамин - красный.) (По данным L. D. Frye и М. Edidin, J. Cell. Sci., 7, 319-335, 1970, с разрешения

The Company of Biologists.)

название флип-флоп), но они способны вращаться вокруг оси, перпендикулярной плоскости бислоя (вращательная диффузия). К тому же многие мембранные белки могут перемещаться в плоскости мембраны (латеральная диффузия). То, что некоторые белки плазматической мембраны способны передвигаться в плоскости бислоя, было впервые прямо показано в 1970 г. с помощью экспериментов на гибридных клетках (гетерокарионах), полученных искусственным путем в результате слияния клеток мыши и человека. Для того чтобы различить белки плазматических мембран мыши и человека, были использованы две группы меченых антител. Первоначально мышиные и человеческие белки располагались только в своих областях гетерокариона. Однако примерно за полчаса оба набора белков диффундировали и распространялись по всей поверхности клетки (рис. 6-33). Еще более убедительные доказательства подвижности мембранных белков были получены благодаря открытию процесса, названного пэтчингом (см. разд. 6.5.13). Суть этого феномена заключается в следующем. Если белки клеточной поверхности «сшить» с помощью антител, они собираются в большие кластеры, образуя на

374

поверхности клетки дискретные зоны неправильной формы (пэтчи, от англ. patch). Однако, чтобы антитела могли «сшить» мембранные белки в большие комплексы, эти белки должны свободно перемещаться в плоскости бислоя.

Скорость латеральной диффузии можно измерить с помощью метода восстановления флуоресценции после ее угашения светом (FRAP, от англ. fluorescence recovery after photobleaching.) Впервые этот метод использовали для измерения скорости диффузии индивидуальных молекул родопсина в мембранах дисков, присутствующих в палочках сетчатки глаза у позвоночных. Как мы уже говорили, родопсин имеет структуру, сходную со структурой бактериородопсина и содержит такую же хромофорную группу-ретиналь. Диффузия молекул родопсина может быть измерена следующим образом. В молекулах родопсина, находящихся на одной стороне палочки, с помощью хорошо сфокусированного луча света большой интенсивности обесцвечивают хромофор, а затем измеряют время, в течение которого обесцвеченные молекулы перемешиваются с необесцвеченными за счет диффузии (рис. 6-34), Скорость диффузии (или коэффициент диффузии, D) оказалась равной примерно 5 х 10-9 см2 с-1. Это в 2 раза меньше коэффициента диффузии в мембране молекул фосфолипидов (см. разд. 6.1.2) и одновременно - наибольший коэффициент среди всех известных мембранных белков.

Эту же технику использовали для изучения мембранных белков, не содержащих хромофоров. Вначале к таким белкам присоединяли флуоресцентные лиганды. Обычно для этой цели брали флуоресцентно меченные моновалентные антитела (т. е. фрагменты антител с одним участком связывания антигена и, следовательно, неспособных к сшиванию соседних молекул). Затем эти привязанные лиганды обесцвечивали лазерным лучом, после чего измеряли время, необходимое для того, чтобы мембранные белки, несущие необесцвеченные антитела, переместились путем диффузии в обесцвеченную область (рис. 6-35). Измеренные таким образом скорости диффузии различных гликопротеинов плазматической мембраны обычно оказывались по крайней мере в 5-50 раз меньше, чем у молекул родопсина. Относительно низкие скорости диффузии не являются свойством, внутренне присущим индивидуаль-

Рис. 6-34. Измерение скорости латеральной диффузии молекул родопсина в мембранах дисков палочки сетчатки. Хромофоры родопсиновых молекул обесцвечиваются на одной стороне клетки; затем измеряется скорость, с которой обесцвеченные и необесцвеченные молекулы родопсина перемешиваются при диффузии. (По данным М. Роо и R.A. Cone, Nature, 247, 438-441, 1974.)

375

Рис. 6-35. Измерение скорости латеральной диффузии гликопротеина плазматической мембраны. А. Специфический гликопротеин метят флуоресцирующим моновалентным антителом, связывающим только этот белок. После обесцвечивания антител лазерным лучом малого сечения измеряют восстановление интенсивности флуоресценции за счет диффузии обесцвеченных молекул из, а необесцвеченных в область облучения. Б. График, показывающий скорость восстановления флуоресценции. Чем больше коэффициент диффузии мембранного гликопротеина, тем быстрее происходит восстановление.

ным молекулам гликопротеинов, поскольку эти же молекулы гликопротеинов в реконструированных синтетических бислоях диффундируют гораздо быстрее. Истинная причина низких скоростей диффузии при измерении методом FRAP для гликопротеинов плазматической мембраны остается неясной. Одно из возможных объяснений заключается в том, что объемные полисахаридные цепи внеклеточных доменов этих молекул взаимодействуют с цепями олигосахаридов других мембранных гликопротеинов, обусловливая медленную диффузию. По крайней мере в некоторых случаях удаление углеводных цепей сильно увеличивало скорость диффузии белков.

6.2.10. Клетки могут объединять белки и липиды в специфические домены на мембране [17]

Значительным шагом вперед в понимании структуры и функции мембран следует считать осознание того, что биологические мембраны - это двумерные жидкости. Однако ясно, что представление о мембране как о липидном море, в котором свободно плавают белки, оказалось сильно упрощенным. Многие клетки обладают способностью удерживать мембранные белки в специфических доменах в непрерывном липидном бислое. Например, в эпителиальных клетках, выстилающих кишечник или почечные канальцы, некоторые ферменты плазматической мембраны и транспортные белки располагаются только на апикальной поверхности клеток, тогда как другие - только на базальной и латеральной (рис. 6-36). Такое асимметричное распределение мембранных белков существенно для функционирования эпителия (мы обсудим это позже, см. разд. 6.4.11). Липидный состав этих двух мембранных доменов также различен, что указывает на то, что эпителиальные клетки могут ограничивать диффузию между доменами как молекул белка, так и молекул липидов (хотя эксперименты с мечеными молекулами липидов наводят на мысль, что это справедливо лишь для липидных молекул внешнего монослоя мембраны). Такое пространственное разделение белков и липидов, по-видимому, поддерживается (по крайней мере частично) благо-

Рис. 6-36. Схематическое изображение клетки эпителия, показывающее, каким образом может ограничиваться область распределения различных белков в плазматической мембране. Белки А (в апикальной мембране) и В (в базальной и латеральной мембранах) способны латерально диффундировать только в пределах соответствующих областей мембраны, а проникнуть в другие участки им мешают, вероятно, специализированные клеточные контакты, называемые плотными контактами. Липидные молекулы внешнего (нецитоплазматического) монослоя плазматической мембраны также не могут диффундировать между двумя доменами, а липиды внутреннего (цитоплазматического) монослоя могут это делать.

376

Рис. 6-37. Три домена плазматической мембраны сперматозоида морской свинки, выявляемые с помощью моноклональных антител. Сперматозоид показан схематически в верхней части рисунка. На каждой из трех микрофотографий (А, Б и В) иммунофлуоресцентное окрашивание клеточной поверхности различными моноклональными антителами сочетается с фазово-контрастным изображением тех же клеток. Антитела на (А) метят только верхнюю часть головки, на (Б) - только нижнюю часть головки, а на (В) - только хвост. и Б предоставлены D. G. Myles et al., Cell, 23, 434439, 1981. В-предоставлена P. Primakoff и D. G. Myles, Dev. Biol., 98, 417-428, 1983.)

даря барьерам, образованным межклеточными контактами особого рода - плотными контактами (см. разд. 14.1.1). Вопрос о том, почему мембранные белки, формирующие межклеточные контакты, не перемещаются латерально во взаимодействующих мембранах (см. рис. 6-38, 5), обсуждается ниже.

Мембранные домены могут поддерживаться клеткой и без межклеточных контактов. К примеру, сперматозоид животных - это отдельная клетка, состоящая из двух структурно и функционально различных частей - головки и хвоста, покрытых непрерывной плазматической мембраной. При исследовании клеток спермы методом иммунофлуоресцентной микроскопии с использованием различных антител к антигенам поверхности клетки обнаружили, что плазматическая мембрана состоит по крайней мере из трех различных доменов (рис. 6-37). В некоторых случаях антигены могут диффундировать внутри собственных обособленных доменов. Однако остается непонятным механизм того, каким образом поддерживается обособленность этих доменов.

В двух рассмотренных примерах диффузия белков и липидов ограничивалась специализированными доменами, расположенными на непрерывной плазматической мембране. У клеток есть и более сильные способы иммобилизации определенных мембранных белков. Это хорошо видно на примере пурпурных мембран Halobacterium. В данном случае молекулы бактериородопсина собраны в большие двумерные кристаллы, в которых отдельные белковые молекулы фиксированы по отношению друг к другу. Крупные агрегаты такого типа диффундируют очень медленно. В более общем случае ограничение латеральной подвижности специфических мембранных белков связано с их взаимодействием с макромолекулярными образованиями, находящимися снаружи или внутри клеток. Мы уже говорили о том, что некоторые мембранные белки эритроцитов тесно связаны с внутренним цитоскелетом. В клетках других типов белки плазматической мембраны могут быть также связаны с цитоскелетом или внеклеточным матриксом, либо и с тем и с другим. Четыре известных способа иммобилизации специфических мембранных белков показаны на рис. 6-38.

Заключение

Липидный бислой определяет основные структурные особенности биологических мембран, тогда как белки ответственны за большинство мембранных функций. Они выступают в качестве специфических рецепторов и ферментов, осуществляют транспорт через мембрану различных веществ и т. д. Большинство мембранных белков пронизывает бислой в виде одиночной α-спирали; но есть и такие, которые пересекают бислой несколько раз в виде серии α-спиралей. Следующая группа белков ассоциирует с мембраной, не пересекая бислой, а прикрепляясь к той или другой стороне мембраны. Многие из этих белков связаны нековалентными взаимодействиями с трансмембранными белками, есть и такие, которые

377

Рис. 6-38. Четыре способа ограничения латеральной подвижности белков плазматической мембраны. Белки могут ассоциировать в большие комплексы (как молекулы бактериородопсина в пурпурной мембране Halobacterium) (А), могут связываться с комплексами макромолекул снаружи (Б) или внутри клетки (В) или взаимодействовать с белками на поверхности другой клетки (Г).

имеют ковалентную связь с молекулами липидов. Большинство мембранных белков, так же как и липидов, способны свободно перемещаться в плоскости мембраны. С другой стороны, клетки могут и иммобилизовывать специфические мембранные белки, и удерживать их, как впрочем и липиды, в виде специальных доменов в непрерывном липидном бислое.

6.3. Мембранные углеводы

На поверхности всех эукариотических клеток имеются углеводы. Они представлены в виде олигосахаридных и полисахаридных цепей, ковалентно присоединенных к мембранным белкам (гликопротеины) и к липидам (гликолипиды). Масса углеводов плазматической мембраны колеблется от 2 до 10% от массы мембраны. Большинство белков плазматической мембраны, выступающих на поверхности клеток, связаны с остатками Сахаров. В то же время из десяти липидных молекул в наружном монослое большинства плазматических мембран с углеводами связана менее чем одна молекула (см. разд. 6.1.6). Пятидесятикратное превышение в мембране числа липидных молекул над молекулами белка означает, что липидных молекул, связанных с углеводами в обычной (типичной) мембране больше, чем белковых. Однако такой гликопротеин как гликофорин может иметь большое количество боковых олигосахаридных цепей, а каждая молекула гликолипида - лишь одну. Кроме того, многие плазматические мембраны содержат молекулы интегральных протеогликанов. Протеогликаны состоят из длинных полисахаридных цепей, присоединенных к белковому кору, и выявляются главным образом на внешней стороне клетки как часть внеклеточного матрикса. Однако в некоторых случаях кор интегральных протеогликанов, по-видимому, пронизывает липидный бислой.

6-18

6.3.1. Углеводы в биологических мембранах располагаются только на поверхности, не контактирующей с цитозолем [18]

Как мы уже знаем, биологические мембраны чрезвычайно асимметричны: наружный и внутренний монослои различаются как по липидному составу, так и по белковому. Такая же асимметрия наблюдается и в распределении углеводов; углеводные цепи основной массы гликолипидов, гликопротеинов и протеогликанов во внутренних и плазматических мембранах локализованы исключительно на той стороне мембраны, которая не контактирует с цитозолем. В плазматических мембранах остатки Сахаров выступают на внешнюю поверхность клетки, а во внутренних мембранах они обращены внутрь ограниченного мембраной компартмента. Существуют два различных варианта присоединения олигосахаридов к мембранным гликопротеинам: они могут быть «пришиты» N-связью к остаткам аспарагина в полипептидной цепи или О-связью к остаткам серина или треонина. N-связанные олигосахариды обычно содержат около 12 Сахаров и строятся на основе общего ядра, состоящего из остатков маннозы. О-связанные олигосахариды, как правило, короче (длиной около 4 сахарных остатков).

Одним из простейших способов демонстрации присутствия Сахаров на клеточной поверхности является использование белков, связывающих углеводы, и названных лектинами. Существует ряд белков, обладающих сайтами, узнающими и связывающими специфические последовательности сахарных остатков. Первоначально они были выделены из семян

378

Таблица 6-2. Наиболее популярные коммерческие препараты растительных лектинов и сахара, которые ими узнаются

Лектины

Сахароспецифичность

 

 

Конканавалин А

α-D-глюкоза и α-D-манноза

Лектин из сои

α-галактоза и N-ацетил-D-галактозамин

Лектин из зародышей пшеницы

N-ацетилглюкозамин

Лектин из семян лотоса

Фукоза

 

 

растений. Некоторые лектины чрезвычайно токсичны и служат для отпугивания животных, которые могли бы съесть семена. Совсем недавно было показано, что лектины имеются не только у растений, но и у многих других существ, включая животных. Некоторые из них находятся на поверхности клеток, и, по-видимому, участвуют в межклеточном узнавании (см. рис. 5-42). Поскольку лектины связываются с гликопротеинами, протеогликанами и гликолипидами, находящимися на поверхности клеток, они широко используются в клеточной биологии в качестве биохимического маркера для локализации и выделения молекул плазматической мембраны, содержащих сахара. В таблице 6-2 представлены наиболее часто используемые растительные лектины и указана их специфичность по отношению к сахарам.

Термин клеточная оболочка, или гликокаликс, часто используются для обозначения обогащенной углеводами периферической зоны на

Рис. 6-39. Электронная микрофотография поверхности лимфоцита, окрашенного рутениевым красным с целью получить контрастное изображение клеточной оболочки (гликокаликса). (С любезного разрешения А. М. Glauer и G. М. W. Cook.)

Рис. 6-40. Схематическое изображение клеточной оболочки (гликокаликса), состоящей из боковых олигосахаридных цепей гликолипидов и интегральных мембранных гликопротеинов и полисахаридных цепей протеогликанов. В некоторых клетках присутствуют также адсорбированные гликопротеины и протеогликаны (не показаны). Обратите внимание, что все углеводы располагаются на наружной стороне мембраны. Некоторые интегральные гликопротеины и протеогликаны могут быть ковалентно связаны через специфические олигосахариды с фосфатидилинозитолом, находящимся во внешнем монослое плазматической мембраны (см. рис. 6-14.)

379

поверхности большинства эукариотических клеток. При использовании меченых лектинов или различных красителей, например рутениевого красного, эта зона отчетливо видна на электронных микрофотографиях (рис. 6-39). Хотя углеводы главным образом присоединены к молекулам, входящим в состав плазматической мембраны, гликокаликс может также содержать гликопротеины и протеогликаны, которые секретируются клетками и затем адсорбируются на клеточной поверхности (рис. 6-40). Некоторые из этих адсорбированных макромолекул являются компонентами внеклеточного матрикса. Так что вопрос о том, где кончается плазматическая мембрана и начинается внеклеточный матрикс, можно считать чисто семантическим.

Ясно, что высокая концентрация углеводов на клеточной поверхности должна оказывать существенное влияние на многие функции плазматической мембраны. Однако природа этого влияния еще не понята. Структурная сложность некоторых олигосахаридов, а также то, что углеводы располагаются только на поверхности клетки, свидетельствуют о важной роли углеводов в процессах межклеточного узнавания и узнавания между клеткой и матриксом. Для некоторых случаев существуют веские доказательства этой роли (см. разд. 15.4.2 и 15.4.9), однако гораздо чаще такие функции углеводов клеточной поверхности однозначно доказать очень трудно.

Заключение

В плазматических мембранах всех эукариотических клеток большинство белков, расположенных на поверхности клетки, а также некоторые липидные молекулы наружного липидного монослоя ковалентно связаны с олигосахаридными цепями. Некоторые плазматические мембраны содержат молекулы интегральных протеогликанов, в которых несколько полисахаридных цепей ковалентно сшиты с трансмембранным белком или связанным с липидами коровым белком. Хотя функция углеводов клеточной поверхности пока непонятна, представляется вероятным, что по крайней мере некоторые из них принимают участие в процессах межклеточного узнавания и узнавания между клеткой и матриксом.

6.4. Перенос малых молекул через мембрану [19]

Поскольку внутренняя часть липидного бислоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Благодаря такому барьеру предотвращается утечка водорастворимого содержимого клеток. Однако из-за наличия подобного барьера клетки оказались вынужденными создать специальные пути для переноса водорастворимых молекул через свои мембраны. Клетки должны получать необходимые питательные вещества и выделять вредные продукты метаболизма. Кроме того, клеткам надо регулировать внутриклеточные концентрации ионов, что подразумевает возможность транспорта определенных ионов в клетку или из клетки. Перенос малых водорастворимых молекул через липидный бислой осуществляется с помощью особых трансмембранных белков, каждый из которых отвечает за транспортировку определенной молекулы или группы родственных молекул. В клетках существуют также способы переноса через плазматические мембраны макромолекул, таких, как белки, и даже крупных частиц. Однако соответствующие механизмы сильно отличаются от механизмов транспорта малых молекул и потому будут обсуждаться в другом разделе (см. разд. 6.5).

Из данного раздела мы узнаем, что избирательная проницаемость

380

Таблица 6-3. Сравнение концентраций ионов внутри и снаружи типичной животной клетки

Компонент

Внутриклеточная концентрация (мМ)

Внеклеточная концентрация (мМ)

Катионы

 

 

Na+

5-15

145

К+

140

5

Mg2+

0,5

1-2

Са2+

10-4

1-2

Н+

8 х 10-5 (10-7,1 М или рН 7,1)

4 х 10-5 (10-7,4М или рН 7,4)

Анионы 1)

 

 

Cl-

5-15

110

1) Поскольку клетки должны содержать равное число положительных и отрицательных зарядов (чтобы быть электрически нейтральными) значительный дефицит внутриклеточных анионов отражает тот факт, что большую часть клеточного содержимого составляют отрицательно заряженные молекулы (НСО3-, РО3-, белки, нуклеиновые кислоты, метаболиты, несущие фосфатные или карбоксильные группы и т.п.). Концентрации Са2+ и Mg2+ даны для свободных ионов. В клетках имеется около 20 мМ Мд2+ и 1-2 мМ Са2+ , но они в основном связаны белками и другими веществами, и в случае Са2+ хранятся внутри различных органелл.

плазматической мембраны в сочетании с активным транспортом через нее создают значительные различия в ионном составе цитозоля и внеклеточной жидкости (табл. 6-3). Это позволяет клеточным мембранам запасать потенциальную энергию в виде градиентов концентраций ионов. Трансмембранные ионные градиенты используются для осуществления различных транспортных процессов, для передачи электрических сигналов и при синтезе АТР в митохондриях, хлоропластах и бактериях. Перед тем как приступить к обсуждению свойств транспортных белков и ионных градиентов, создаваемых некоторыми из этих белков, необходимо кое-что узнать о проницаемости синтетического липидного бислоя, не содержащего белков.

6.4.1. Липидные бислои, не содержащие белков, непроницаемы для ионов, но свободно пропускают воду [19]

В принципе любая молекула за достаточно длительное время пройдет за счет диффузии через лишенный белков липидный бислой по градиенту концентрации. Однако скорости, с которыми различные молекулы диффундируют через такой бислой, очень сильно варьируют в зависимости главным образом от размера молекулы и ее относительной растворимости в жирах. В общем случае, чем меньше молекула и чем более она «жирорастворима» (т. е. более гидрофобна, или неполярна), тем быстрее она будет диффундировать через бислой. Малые неполярные молекулы, такие, как О2, легко растворяются в липидных бислоях и вследствие этого быстро диффундируют через них. Незаряженные полярные молекулы также диффундируют с большой скоростью, если они достаточно малы. Например, СО2 (44 Да), этанол (46 Да) и мочевина (60 Да) проходят через бислой быстро, глицерол (92 Да) - медленнее, а глюкоза (180 Да) едва ли вообще способна пройти сквозь бислой (рис. 6-41). Весьма важно то, что вода (18 Да) диффундирует через липидный бислой очень быстро, несмотря на то что молекулы воды относительно нерастворимы в жирах. Это обусловлено тем, что ее молекулы малы и незаряжены.

Рис. 6-41. Относительная проницаемость синтетического липидного бислоя для различных классов молекул. Чем меньше молекула и, что более важно, чем меньше она образует водородных связей, тем быстрее она диффундирует через мембрану.