finantial
.pdf
|
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
1 |
3,9020 |
4,8534 |
5,7955 |
6,7282 |
7,6517 |
8,5660 |
9,4713 |
10,368 |
11,255 |
1,5 |
3,8544 |
4,7826 |
5,6972 |
6,5982 |
7,4859 |
8,3605 |
9,2222 |
10,071 |
10,908 |
2 |
3,8077 |
4,7135 |
5,6014 |
6,4720 |
7,3255 |
8,1622 |
8,9826 |
9,7868 |
10,575 |
2,5 |
3,7620 |
4,6458 |
5,5081 |
6,3494 |
7,1701 |
7,9709 |
8,7521 |
9,5142 |
10,258 |
3 |
3,7171 |
4,5797 |
5,4172 |
6,2303 |
7,0197 |
7,7861 |
8,5302 |
9,2526 |
9,9540 |
3,5 |
3,6731 |
4,5151 |
5,3286 |
6,1145 |
6,8740 |
7,6077 |
8,3166 |
9,0016 |
9,6633 |
4 |
3,6299 |
4,4518 |
5,2421 |
6,0021 |
6,7327 |
7,4353 |
8,1109 |
8,7605 |
9,3851 |
4,25 |
3,6086 |
4,4207 |
5,1997 |
5,9470 |
6,6638 |
7,3513 |
8,0109 |
8,6435 |
9,2504 |
4,5 |
3,5875 |
4,3900 |
5,1579 |
5,8927 |
6,5959 |
7,2688 |
7,9127 |
8,5289 |
9,1186 |
4,75 |
3,5666 |
4,3596 |
5,1165 |
5,8392 |
6,5290 |
7,1876 |
7,8163 |
8,4166 |
8,9896 |
5 |
3,5460 |
4,3295 |
5,0757 |
5,7864 |
6,4632 |
7,1078 |
7,7217 |
8,3064 |
8,8633 |
5,25 |
3,5255 |
4,2997 |
5,0354 |
5,7343 |
6,3984 |
7,0294 |
7,6288 |
8,1984 |
8,7396 |
5,5 |
3,5052 |
4,2703 |
4,9955 |
5,6830 |
6,3346 |
6,9522 |
7,5376 |
8,0925 |
8,6185 |
5,75 |
3,4850 |
4,2412 |
4,9562 |
5,6323 |
6,2717 |
6,8763 |
7,4481 |
7,9887 |
8,5000 |
6 |
3,4651 |
4,2124 |
4,9173 |
5,5824 |
6,2098 |
6,8017 |
7,3601 |
7,8869 |
8,3838 |
6,25 |
3,4454 |
4,1839 |
4,8789 |
5,5331 |
6,1488 |
6,7283 |
7,2737 |
7,7870 |
8,2701 |
6,5 |
3,4258 |
4,1557 |
4,8410 |
5,4845 |
6,0888 |
6,6561 |
7,1888 |
7,6890 |
8,1587 |
6,75 |
3,4064 |
4,1278 |
4,8036 |
5,4366 |
6,0296 |
6,5851 |
7,1055 |
7,5929 |
8,0496 |
7 |
3,3872 |
4,1002 |
4,7665 |
5,3893 |
5,9713 |
6,5152 |
7,0236 |
7,4987 |
7,9427 |
7,25 |
3,3682 |
4,0729 |
4,7300 |
5,3426 |
5,9139 |
6,4465 |
6,9431 |
7,4062 |
7,8379 |
7,5 |
3,3493 |
4,0459 |
4,6938 |
5,2966 |
5,8573 |
6,3789 |
6,8641 |
7,3154 |
7,7353 |
7,75 |
3,3306 |
4,0192 |
4,6582 |
5,2512 |
5,8016 |
6,3124 |
6,7864 |
7,2264 |
7,6347 |
8 |
3,3121 |
3,9927 |
4,6229 |
5,2064 |
5,7466 |
6,2469 |
6,7101 |
7,1390 |
7,5361 |
8,25 |
3,2938 |
3,9665 |
4,5880 |
5,1621 |
5,6925 |
6,1825 |
6,6351 |
7,0532 |
7,4394 |
8,5 |
3,2756 |
3,9406 |
4,5536 |
5,1185 |
5,6392 |
6,1191 |
6,5613 |
6,9690 |
7,3447 |
8,75 |
3,2576 |
3,9150 |
4,5196 |
5,0755 |
5,5866 |
6,0567 |
6,4889 |
6,8863 |
7,2518 |
9 |
3,2397 |
3,8897 |
4,4859 |
5,0330 |
5,5348 |
5,9952 |
6,4177 |
6,8052 |
7,1607 |
9,5 |
3,2045 |
3,8397 |
4,4198 |
4,9496 |
5,4334 |
5,8753 |
6,2788 |
6,6473 |
6,9838 |
10 |
3,1699 |
3,7908 |
4,3553 |
4,8684 |
5,3349 |
5,7590 |
6,1446 |
6,4951 |
6,8137 |
10,5 |
3,1359 |
3,7429 |
4,2922 |
4,7893 |
5,2392 |
5,6463 |
6,0148 |
6,3482 |
6,6500 |
11 |
3,1024 |
3,6959 |
4,2305 |
4,7122 |
5,1461 |
5,5370 |
5,8892 |
6,2065 |
6,4924 |
11,5 |
3,0696 |
3,6499 |
4,1703 |
4,6370 |
5,0556 |
5,4311 |
5,7678 |
6,0697 |
6,3406 |
12 |
3,0373 |
3,6048 |
4,1114 |
4,5638 |
4,9676 |
5,3282 |
5,6502 |
5,9377 |
6,1944 |
12,5 |
3,0056 |
3,5606 |
4,0538 |
4,4923 |
4,8820 |
5,2285 |
5,5364 |
5,8102 |
6,0535 |
13 |
2,9745 |
3,5172 |
3,9975 |
4,4226 |
4,7988 |
5,1317 |
5,4262 |
5,6869 |
5,9176 |
14 |
2,9137 |
3,4331 |
3,8887 |
4,2883 |
4,6389 |
4,9464 |
5,2161 |
5,4527 |
5,6603 |
15 |
2,8550 |
3,3522 |
3,7845 |
4,1604 |
4,4873 |
4,7716 |
5,0188 |
5,2337 |
5,4206 |
16 |
2,7982 |
3,2743 |
3,6847 |
4,0386 |
4,3436 |
4,6065 |
4,8332 |
5,0286 |
5,1971 |
18 |
2,6901 |
3,1272 |
3,4976 |
3,8115 |
4,0776 |
4,3030 |
4,4941 |
4,6560 |
4,7932 |
20 |
2,5887 |
2,9906 |
3,3255 |
3,6046 |
3,8372 |
4,0310 |
4,1925 |
4,3271 |
4,4392 |
|
|
|
|
|
|
|
|
|
|
Табл. B.4: Таблиця значень an| для n = 4, 5, . . . , 12.
333
|
13 |
14 |
15 |
17 |
20 |
25 |
30 |
35 |
40 |
1 |
12,134 |
13,004 |
13,865 |
15,562 |
18,046 |
22,023 |
25,808 |
29,409 |
32,835 |
1,5 |
11,732 |
12,543 |
13,343 |
14,908 |
17,169 |
20,720 |
24,016 |
27,076 |
29,916 |
2 |
11,348 |
12,106 |
12,849 |
14,292 |
16,351 |
19,524 |
22,397 |
24,999 |
27,356 |
2,5 |
10,983 |
11,691 |
12,381 |
13,712 |
15,589 |
18,424 |
20,930 |
23,145 |
25,103 |
3 |
10,635 |
11,296 |
11,938 |
13,166 |
14,878 |
17,413 |
19,600 |
21,487 |
23,115 |
3,5 |
10,303 |
10,921 |
11,517 |
12,651 |
14,212 |
16,482 |
18,392 |
20,001 |
21,355 |
4 |
9,9856 |
10,563 |
11,118 |
12,166 |
13,590 |
15,622 |
17,292 |
18,665 |
19,793 |
4,25 |
9,8325 |
10,391 |
10,927 |
11,933 |
13,294 |
15,217 |
16,779 |
18,047 |
19,077 |
4,5 |
9,6829 |
10,223 |
10,740 |
11,707 |
13,008 |
14,828 |
16,289 |
17,461 |
18,402 |
4,75 |
9,5366 |
10,059 |
10,557 |
11,488 |
12,731 |
14,454 |
15,820 |
16,904 |
17,763 |
5 |
9,3936 |
9,8986 |
10,380 |
11,274 |
12,462 |
14,094 |
15,373 |
16,374 |
17,159 |
5,25 |
9,2538 |
9,7423 |
10,207 |
11,067 |
12,202 |
13,748 |
14,944 |
15,870 |
16,588 |
5,5 |
9,1171 |
9,5896 |
10,038 |
10,865 |
11,950 |
13,414 |
14,534 |
15,391 |
16,046 |
5,75 |
8,9834 |
9,4406 |
9,8729 |
10,668 |
11,706 |
13,093 |
14,141 |
14,934 |
15,533 |
6 |
8,8527 |
9,2950 |
9,7122 |
10,477 |
11,470 |
12,783 |
13,765 |
14,498 |
15,046 |
6,25 |
8,7248 |
9,1528 |
9,5555 |
10,291 |
11,241 |
12,485 |
13,404 |
14,083 |
14,584 |
6,5 |
8,5997 |
9,0138 |
9,4027 |
10,111 |
11,019 |
12,198 |
13,059 |
13,687 |
14,146 |
6,75 |
8,4774 |
8,8781 |
9,2535 |
9,9346 |
10,803 |
11,921 |
12,727 |
13,309 |
13,728 |
7 |
8,3577 |
8,7455 |
9,1079 |
9,7632 |
10,594 |
11,654 |
12,409 |
12,948 |
13,332 |
7,25 |
8,2405 |
8,6158 |
8,9658 |
9,5964 |
10,391 |
11,396 |
12,104 |
12,603 |
12,954 |
7,5 |
8,1258 |
8,4892 |
8,8271 |
9,4340 |
10,195 |
11,147 |
11,810 |
12,273 |
12,594 |
7,75 |
8,0136 |
8,3653 |
8,6917 |
9,2757 |
10,004 |
10,907 |
11,529 |
11,957 |
12,252 |
8 |
7,9038 |
8,2442 |
8,5595 |
9,1216 |
9,8181 |
10,675 |
11,258 |
11,655 |
11,925 |
8,25 |
7,7962 |
8,1259 |
8,4304 |
8,9715 |
9,6381 |
10,451 |
10,997 |
11,365 |
11,613 |
8,5 |
7,6910 |
8,0101 |
8,3042 |
8,8252 |
9,4633 |
10,234 |
10,747 |
11,088 |
11,315 |
8,75 |
7,5879 |
7,8969 |
8,1810 |
8,6826 |
9,2935 |
10,025 |
10,506 |
10,822 |
11,030 |
9 |
7,4869 |
7,7862 |
8,0607 |
8,5436 |
9,1285 |
9,8226 |
10,274 |
10,567 |
10,757 |
9,5 |
7,2912 |
7,5719 |
7,8282 |
8,2760 |
8,8124 |
9,4376 |
9,8347 |
10,087 |
10,247 |
10 |
7,1034 |
7,3667 |
7,6061 |
8,0216 |
8,5136 |
9,0770 |
9,4269 |
9,6442 |
9,7791 |
10,5 |
6,9230 |
7,1702 |
7,3938 |
7,7794 |
8,2309 |
8,7390 |
9,0474 |
9,2347 |
9,3483 |
11 |
6,7499 |
6,9819 |
7,1909 |
7,5488 |
7,9633 |
8,4217 |
8,6938 |
8,8552 |
8,9511 |
11,5 |
6,5835 |
6,8013 |
6,9967 |
7,3291 |
7,7098 |
8,1236 |
8,3637 |
8,5030 |
8,5839 |
12 |
6,4235 |
6,6282 |
6,8109 |
7,1196 |
7,4694 |
7,8431 |
8,0552 |
8,1755 |
8,2438 |
12,5 |
6,2698 |
6,4620 |
6,6329 |
6,9198 |
7,2414 |
7,5790 |
7,7664 |
7,8704 |
7,9281 |
13 |
6,1218 |
6,3025 |
6,4624 |
6,7291 |
7,0248 |
7,3300 |
7,4957 |
7,5856 |
7,6344 |
14 |
5,8424 |
6,0021 |
6,1422 |
6,3729 |
6,6231 |
6,8729 |
7,0027 |
7,0700 |
7,1050 |
15 |
5,5831 |
5,7245 |
5,8474 |
6,0472 |
6,2593 |
6,4641 |
6,5660 |
6,6166 |
6,6418 |
16 |
5,3423 |
5,4675 |
5,5755 |
5,7487 |
5,9288 |
6,0971 |
6,1772 |
6,2153 |
6,2335 |
18 |
4,9095 |
5,0081 |
5,0916 |
5,2223 |
5,3527 |
5,4669 |
5,5168 |
5,5386 |
5,5482 |
20 |
4,5327 |
4,6106 |
4,6755 |
4,7746 |
4,8696 |
4,9476 |
4,9789 |
4,9915 |
4,9966 |
|
|
|
|
|
|
|
|
|
|
Табл. B.5: Таблиця значень an| для n = 13, 14, . . . , 40.
334
i, % |
ν |
d, % |
i(2), % |
i(4), % |
i(12) , % |
d(2), % |
d(4), % |
d(12), % |
δ, % |
1 |
0,9901 |
0,990 |
0,998 |
0,996 |
0,995 |
0,993 |
0,994 |
0,995 |
0,995 |
1,5 |
0,9852 |
1,478 |
1,494 |
1,492 |
1,490 |
1,483 |
1,486 |
1,488 |
1,489 |
2 |
0,9804 |
1,961 |
1,990 |
1,985 |
1,982 |
1,970 |
1,975 |
1,979 |
1,980 |
2,5 |
0,9756 |
2,439 |
2,485 |
2,477 |
2,472 |
2,454 |
2,462 |
2,467 |
2,469 |
3 |
0,9709 |
2,913 |
2,978 |
2,967 |
2,960 |
2,934 |
2,945 |
2,952 |
2,956 |
3,5 |
0,9662 |
3,382 |
3,470 |
3,455 |
3,445 |
3,411 |
3,425 |
3,435 |
3,440 |
4 |
0,9615 |
3,846 |
3,961 |
3,941 |
3,928 |
3,884 |
3,903 |
3,916 |
3,922 |
4,25 |
0,9592 |
4,077 |
4,206 |
4,184 |
4,169 |
4,119 |
4,141 |
4,155 |
4,162 |
4,5 |
0,9569 |
4,306 |
4,450 |
4,426 |
4,410 |
4,354 |
4,378 |
4,394 |
4,402 |
4,75 |
0,9547 |
4,535 |
4,695 |
4,668 |
4,650 |
4,587 |
4,614 |
4,632 |
4,641 |
5 |
0,9524 |
4,762 |
4,939 |
4,909 |
4,889 |
4,820 |
4,849 |
4,869 |
4,879 |
5,25 |
0,9501 |
4,988 |
5,183 |
5,150 |
5,128 |
5,052 |
5,084 |
5,106 |
5,117 |
5,5 |
0,9479 |
5,213 |
5,426 |
5,390 |
5,366 |
5,283 |
5,318 |
5,342 |
5,354 |
5,75 |
0,9456 |
5,437 |
5,670 |
5,630 |
5,604 |
5,513 |
5,552 |
5,578 |
5,591 |
6 |
0,9434 |
5,660 |
5,913 |
5,870 |
5,841 |
5,743 |
5,785 |
5,813 |
5,827 |
6,25 |
0,9412 |
5,882 |
6,155 |
6,109 |
6,078 |
5,971 |
6,017 |
6,047 |
6,062 |
6,5 |
0,9390 |
6,103 |
6,398 |
6,347 |
6,314 |
6,199 |
6,248 |
6,281 |
6,297 |
6,75 |
0,9368 |
6,323 |
6,640 |
6,586 |
6,550 |
6,426 |
6,479 |
6,514 |
6,532 |
7 |
0,9346 |
6,542 |
6,882 |
6,823 |
6,785 |
6,653 |
6,709 |
6,747 |
6,766 |
7,25 |
0,9324 |
6,760 |
7,123 |
7,061 |
7,020 |
6,878 |
6,938 |
6,979 |
6,999 |
7,5 |
0,9302 |
6,977 |
7,364 |
7,298 |
7,254 |
7,103 |
7,167 |
7,210 |
7,232 |
7,75 |
0,9281 |
7,193 |
7,605 |
7,534 |
7,488 |
7,327 |
7,395 |
7,441 |
7,464 |
8 |
0,9259 |
7,407 |
7,846 |
7,771 |
7,721 |
7,550 |
7,623 |
7,671 |
7,696 |
8,25 |
0,9238 |
7,621 |
8,087 |
8,006 |
7,954 |
7,772 |
7,849 |
7,901 |
7,927 |
8,5 |
0,9217 |
7,834 |
8,327 |
8,242 |
8,186 |
7,994 |
8,075 |
8,130 |
8,158 |
8,75 |
0,9195 |
8,046 |
8,567 |
8,477 |
8,418 |
8,215 |
8,301 |
8,359 |
8,388 |
9 |
0,9174 |
8,257 |
8,806 |
8,711 |
8,649 |
8,435 |
8,526 |
8,587 |
8,618 |
9,5 |
0,9132 |
8,676 |
9,284 |
9,179 |
9,110 |
8,873 |
8,973 |
9,041 |
9,075 |
10 |
0,9091 |
9,091 |
9,762 |
9,645 |
9,569 |
9,307 |
9,418 |
9,493 |
9,531 |
10,5 |
0,9050 |
9,502 |
10,238 |
10,110 |
10,026 |
9,739 |
9,861 |
9,943 |
9,985 |
11 |
0,9009 |
9,910 |
10,713 |
10,573 |
10,482 |
10,168 |
10,301 |
10,391 |
10,436 |
11,5 |
0,8969 |
10,314 |
11,187 |
11,035 |
10,935 |
10,595 |
10,739 |
10,836 |
10,885 |
12 |
0,8929 |
10,714 |
11,660 |
11,495 |
11,387 |
11,018 |
11,174 |
11,280 |
11,333 |
12,5 |
0,8889 |
11,111 |
12,132 |
11,953 |
11,836 |
11,438 |
11,607 |
11,721 |
11,778 |
13 |
0,8850 |
11,504 |
12,603 |
12,410 |
12,284 |
11,856 |
12,037 |
12,160 |
12,222 |
14 |
0,8772 |
12,281 |
13,542 |
13,320 |
13,175 |
12,683 |
12,891 |
13,032 |
13,103 |
15 |
0,8696 |
13,043 |
14,476 |
14,223 |
14,058 |
13,499 |
13,735 |
13,895 |
13,976 |
16 |
0,8621 |
13,793 |
15,407 |
15,121 |
14,934 |
14,305 |
14,570 |
14,751 |
14,842 |
18 |
0,8475 |
15,254 |
17,256 |
16,899 |
16,666 |
15,885 |
16,214 |
16,438 |
16,551 |
20 |
0,8333 |
16,667 |
19,089 |
18,654 |
18,371 |
17,426 |
17,823 |
18,094 |
18,232 |
|
|
|
|
|
|
|
|
|
|
Табл. B.6: Рiзнi типи ставок.
335
i, % |
d, % |
i(2), % |
i(4), % |
i(12), % |
d(2), % |
d(4), % |
d(12), % |
δ, % |
1 |
1,010 |
1,002 |
1,004 |
1,005 |
1,008 |
1,006 |
1,005 |
1,005 |
1,5 |
1,523 |
1,506 |
1,508 |
1,510 |
1,517 |
1,514 |
1,512 |
1,511 |
2 |
2,041 |
2,010 |
2,015 |
2,018 |
2,030 |
2,025 |
2,022 |
2,020 |
2,5 |
2,564 |
2,516 |
2,524 |
2,529 |
2,548 |
2,540 |
2,534 |
2,532 |
3 |
3,093 |
3,022 |
3,034 |
3,042 |
3,069 |
3,057 |
3,049 |
3,045 |
3,5 |
3,627 |
3,531 |
3,546 |
3,557 |
3,594 |
3,578 |
3,567 |
3,562 |
4 |
4,167 |
4,040 |
4,060 |
4,074 |
4,123 |
4,102 |
4,088 |
4,081 |
4,25 |
4,439 |
4,295 |
4,318 |
4,334 |
4,389 |
4,365 |
4,349 |
4,342 |
4,5 |
4,712 |
4,551 |
4,577 |
4,594 |
4,657 |
4,629 |
4,612 |
4,603 |
4,75 |
4,987 |
4,806 |
4,835 |
4,855 |
4,925 |
4,894 |
4,875 |
4,865 |
5 |
5,263 |
5,062 |
5,095 |
5,116 |
5,194 |
5,160 |
5,138 |
5,127 |
5,25 |
5,541 |
5,319 |
5,354 |
5,378 |
5,464 |
5,427 |
5,402 |
5,390 |
5,5 |
5,820 |
5,576 |
5,614 |
5,641 |
5,735 |
5,694 |
5,667 |
5,654 |
5,75 |
6,101 |
5,833 |
5,875 |
5,904 |
6,008 |
5,963 |
5,933 |
5,919 |
6 |
6,383 |
6,090 |
6,136 |
6,168 |
6,281 |
6,232 |
6,200 |
6,184 |
6,25 |
6,667 |
6,348 |
6,398 |
6,432 |
6,556 |
6,502 |
6,467 |
6,449 |
6,5 |
6,952 |
6,606 |
6,660 |
6,697 |
6,831 |
6,773 |
6,735 |
6,716 |
6,75 |
7,239 |
6,864 |
6,923 |
6,963 |
7,108 |
7,045 |
7,003 |
6,983 |
7 |
7,527 |
7,122 |
7,186 |
7,229 |
7,385 |
7,317 |
7,273 |
7,251 |
7,25 |
7,817 |
7,381 |
7,450 |
7,496 |
7,664 |
7,591 |
7,543 |
7,519 |
7,5 |
8,108 |
7,641 |
7,714 |
7,763 |
7,944 |
7,865 |
7,814 |
7,788 |
7,75 |
8,401 |
7,900 |
7,978 |
8,031 |
8,225 |
8,140 |
8,085 |
8,058 |
8 |
8,696 |
8,160 |
8,243 |
8,300 |
8,507 |
8,417 |
8,358 |
8,329 |
8,25 |
8,992 |
8,420 |
8,509 |
8,569 |
8,790 |
8,694 |
8,631 |
8,600 |
8,5 |
9,290 |
8,681 |
8,775 |
8,839 |
9,074 |
8,971 |
8,905 |
8,872 |
8,75 |
9,589 |
8,941 |
9,041 |
9,110 |
9,360 |
9,250 |
9,179 |
9,144 |
9 |
9,890 |
9,202 |
9,308 |
9,381 |
9,646 |
9,530 |
9,455 |
9,417 |
9,5 |
10,497 |
9,726 |
9,844 |
9,925 |
10,222 |
10,092 |
10,007 |
9,966 |
10 |
11,111 |
10,250 |
10,381 |
10,471 |
10,803 |
10,658 |
10,563 |
10,517 |
10,5 |
11,732 |
10,776 |
10,921 |
11,020 |
11,389 |
11,227 |
11,122 |
11,071 |
11 |
12,360 |
11,303 |
11,462 |
11,572 |
11,979 |
11,800 |
11,684 |
11,628 |
11,5 |
12,994 |
11,831 |
12,006 |
12,126 |
12,574 |
12,377 |
12,250 |
12,187 |
12 |
13,636 |
12,360 |
12,551 |
12,683 |
13,173 |
12,957 |
12,818 |
12,750 |
12,5 |
14,286 |
12,891 |
13,098 |
13,242 |
13,778 |
13,541 |
13,389 |
13,315 |
13 |
14,943 |
13,423 |
13,648 |
13,803 |
14,387 |
14,129 |
13,964 |
13,883 |
14 |
16,279 |
14,490 |
14,752 |
14,934 |
15,620 |
15,316 |
15,122 |
15,027 |
15 |
17,647 |
15,563 |
15,865 |
16,075 |
16,874 |
16,519 |
16,293 |
16,183 |
16 |
19,048 |
16,640 |
16,986 |
17,227 |
18,147 |
17,738 |
17,477 |
17,351 |
18 |
21,951 |
18,810 |
19,252 |
19,562 |
20,758 |
20,223 |
19,885 |
19,722 |
20 |
25,000 |
21,000 |
21,551 |
21,939 |
23,457 |
22,774 |
22,346 |
22,140 |
|
|
|
|
|
|
|
|
|
Табл. B.7: Значення ефективної вiдсоткової ставки для даної номiнальної або дисконтної ставки чи iнтенсивностi вiдсотка.
336
B.2 Стандартна нормальна функцiя розподiлу
У таблицi B.8 наведено значення стандартної нормальної функцiї розподiлу Φ. Оскiльки значення ймовiрностi додатнi та мен-
шi за одиницю, то наведено лише цифри пiсля десяткової коми. Користуватися таблицею потрiбно так: для значення t з дво-
ма цифрами пiсля коми треба вибрати рядок, що мiстить цифру до коми та одну цифру пiсля коми та стовпчик, що мiстить другу цифру пiсля коми. Наприклад, для значення t = 2,72 на перетинi рядку, що починається числом 2,7 та стовпчику, що починається цифрою 2 знаходимо Φ(2,72) ≈ 0,99674. Якщо t вiд’-
ємне, можна скористатися симетрiєю стандартного нормального розподiлу: Φ(t) = 1 − Φ(−t).
Якщо число t дано з бiльшою точнiстю, можна визначити
наближене значення, вважаючи функцiю мiж двома сусiднiми значеннями лiнiйною. Наприклад, для t = 0,916 знаходимо значення Φ(0,91) ≈ 0,81859, Φ(0,91) ≈ 0,82121, звiдки за допомогою лiнiйної iнтерполяцiї Φ(0,916) ≈ 0,4 · 0,81859 + 0,6 · 0,82121 ≈
≈ 0,82016.
337
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0,0 |
,50000 |
,50399 |
,50798 |
,51197 |
,51595 |
,51994 |
,52392 |
,52790 |
,53188 |
,53586 |
0,1 |
,53983 |
,54380 |
,54776 |
,55172 |
,55567 |
,55962 |
,56356 |
,56749 |
,57142 |
,57535 |
0,2 |
,57926 |
,58317 |
,58706 |
,59095 |
,59483 |
,59871 |
,60257 |
,60642 |
,61026 |
,61409 |
0,3 |
,61791 |
,62172 |
,62552 |
,62930 |
,63307 |
,63683 |
,64058 |
,64431 |
,64803 |
,65173 |
0,4 |
,65542 |
,65910 |
,66276 |
,66640 |
,67003 |
,67364 |
,67724 |
,68082 |
,68439 |
,68793 |
0,5 |
,69146 |
,69497 |
,69847 |
,70194 |
,70540 |
,70884 |
,71226 |
,71566 |
,71904 |
,72240 |
0,6 |
,72575 |
,72907 |
,73237 |
,73565 |
,73891 |
,74215 |
,74537 |
,74857 |
,75175 |
,75490 |
0,7 |
,75804 |
,76115 |
,76424 |
,76730 |
,77035 |
,77337 |
,77637 |
,77935 |
,78230 |
,78524 |
0,8 |
,78814 |
,79103 |
,79389 |
,79673 |
,79955 |
,80234 |
,80511 |
,80785 |
,81057 |
,81327 |
0,9 |
,81594 |
,81859 |
,82121 |
,82381 |
,82639 |
,82894 |
,83147 |
,83398 |
,83646 |
,83891 |
1,0 |
,84134 |
,84375 |
,84614 |
,84849 |
,85083 |
,85314 |
,85543 |
,85769 |
,85993 |
,86214 |
1,1 |
,86433 |
,86650 |
,86864 |
,87076 |
,87286 |
,87493 |
,87698 |
,87900 |
,88100 |
,88298 |
1,2 |
,88493 |
,88686 |
,88877 |
,89065 |
,89251 |
,89435 |
,89617 |
,89796 |
,89973 |
,90147 |
1,3 |
,90320 |
,90490 |
,90658 |
,90824 |
,90988 |
,91149 |
,91309 |
,91466 |
,91621 |
,91774 |
1,4 |
,91924 |
,92073 |
,92220 |
,92364 |
,92507 |
,92647 |
,92785 |
,92922 |
,93056 |
,93189 |
1,5 |
,93319 |
,93448 |
,93574 |
,93699 |
,93822 |
,93943 |
,94062 |
,94179 |
,94295 |
,94408 |
1,6 |
,94520 |
,94630 |
,94738 |
,94845 |
,94950 |
,95053 |
,95154 |
,95254 |
,95352 |
,95449 |
1,7 |
,95543 |
,95637 |
,95728 |
,95818 |
,95907 |
,95994 |
,96080 |
,96164 |
,96246 |
,96327 |
1,8 |
,96407 |
,96485 |
,96562 |
,96638 |
,96712 |
,96784 |
,96856 |
,96926 |
,96995 |
,97062 |
1,9 |
,97128 |
,97193 |
,97257 |
,97320 |
,97381 |
,97441 |
,97500 |
,97558 |
,97615 |
,97670 |
2,0 |
,97725 |
,97778 |
,97831 |
,97882 |
,97932 |
,97982 |
,98030 |
,98077 |
,98124 |
,98169 |
2,1 |
,98214 |
,98257 |
,98300 |
,98341 |
,98382 |
,98422 |
,98461 |
,98500 |
,98537 |
,98574 |
2,2 |
,98610 |
,98645 |
,98679 |
,98713 |
,98745 |
,98778 |
,98809 |
,98840 |
,98870 |
,98899 |
2,3 |
,98928 |
,98956 |
,98983 |
,99010 |
,99036 |
,99061 |
,99086 |
,99111 |
,99134 |
,99158 |
2,4 |
,99180 |
,99202 |
,99224 |
,99245 |
,99266 |
,99286 |
,99305 |
,99324 |
,99343 |
,99361 |
2,5 |
,99379 |
,99396 |
,99413 |
,99430 |
,99446 |
,99461 |
,99477 |
,99492 |
,99506 |
,99520 |
2,6 |
,99534 |
,99547 |
,99560 |
,99573 |
,99585 |
,99598 |
,99609 |
,99621 |
,99632 |
,99643 |
2,7 |
,99653 |
,99664 |
,99674 |
,99683 |
,99693 |
,99702 |
,99711 |
,99720 |
,99728 |
,99736 |
2,8 |
,99744 |
,99752 |
,99760 |
,99767 |
,99774 |
,99781 |
,99788 |
,99795 |
,99801 |
,99807 |
2,9 |
,99813 |
,99819 |
,99825 |
,99831 |
,99836 |
,99841 |
,99846 |
,99851 |
,99856 |
,99861 |
3,0 |
,99865 |
,99869 |
,99874 |
,99878 |
,99882 |
,99886 |
,99889 |
,99893 |
,99896 |
,99900 |
3,1 |
,99903 |
,99906 |
,99910 |
,99913 |
,99916 |
,99918 |
,99921 |
,99924 |
,99926 |
,99929 |
3,2 |
,99931 |
,99934 |
,99936 |
,99938 |
,99940 |
,99942 |
,99944 |
,99946 |
,99948 |
,99950 |
3,3 |
,99952 |
,99953 |
,99955 |
,99957 |
,99958 |
,99960 |
,99961 |
,99962 |
,99964 |
,99965 |
3,4 |
,99966 |
,99968 |
,99969 |
,99970 |
,99971 |
,99972 |
,99973 |
,99974 |
,99975 |
,99976 |
3,5 |
,99977 |
,99978 |
,99978 |
,99979 |
,99980 |
,99981 |
,99981 |
,99982 |
,99983 |
,99983 |
3,6 |
,99984 |
,99985 |
,99985 |
,99986 |
,99986 |
,99987 |
,99987 |
,99988 |
,99988 |
,99989 |
3,7 |
,99989 |
,99990 |
,99990 |
,99990 |
,99991 |
,99991 |
,99992 |
,99992 |
,99992 |
,99992 |
3,8 |
,99993 |
,99993 |
,99993 |
,99994 |
,99994 |
,99994 |
,99994 |
,99995 |
,99995 |
,99995 |
3,9 |
,99995 |
,99995 |
,99996 |
,99996 |
,99996 |
,99996 |
,99996 |
,99996 |
,99997 |
,99997 |
4,0 |
,99997 |
,99997 |
,99997 |
,99997 |
,99997 |
,99997 |
,99998 |
,99998 |
,99998 |
,99998 |
4,1 |
,99998 |
,99998 |
,99998 |
,99998 |
,99998 |
,99998 |
,99998 |
,99998 |
,99999 |
,99999 |
|
|
|
|
|
|
|
|
|
|
|
Табл. B.8: Значення стандартної нормальної функцiї розподiлу Φ.
338
СПИСОК РЕКОМЕНДОВАНОЇ ЛIТЕРАТУРИ
[1]Боди З., Мертон Р. Финансы. – М.: Вильямс, 2003.
[2]Бойков А. В. Страхование и актуарные расчеты. – М.: РОХОС, 2004.
[3]Борисенко О. Д., Мiшура Ю.С., Радченко В.М., Шевченко Г.М. Збiрник задач з фiнансової математики. – К.: Технiка, 2008.
[4]Брейли Р., Майерс С. Принципы корпоративных финансов. – М.: Олимп-Бизнес, 1997.
[5]Буренин А. Н. Фьючерсные, форвардные и опционные рынки. – М.: Тривола, 1995.
[6]Ван Хорн Дж. К. Основы управления финансами. – М.: Финансы и статистика, 2000.
[7]Галиц Л. Финансовая инженерия. Инструменты и способы управления финансовым рынком. – М.: ТВП, Научное издательство, 1998.
[8]Голубин А. Ю. Математические модели в теории страхования: Построение и оптимизация. – М.: АНКИЛ, 2003.
[9]Жуленев С. В. Финансовая математика: введение в классическую теорию. – М.: Изд-во МГУ, 2001.
[10]Коттл С., Мюррей Р. Ф., Блок Ф. Е. “Анализ ценных бумаг” Грэма и Додда. – М.: Олимп-Бизнес, 2000.
[11]Леоненко М. М., Мишура Ю. С., Пархоменко В. М., Ядренко
М.Й. Теоретико–ймовiрнiснi та статистичнi методи в економетрицi та фiнансовiй математицi.— К.: Iнформтехнiка, 1995.
339
[12]Летчиков А. В. Лекции по финансовой математике. – Ижевск: Институт компьютерных исследований, 2004.
[13]Люу Ю.-Д. Методы и алгоритмы финансовой математики. – М.: Бином. Лаборатория знаний, 2007.
[14]Мельников А. В. Финансовые рынки, Стохастический анализ и расчет производных ценных бумаг. – М.: ТВП, Научное издательство, 1997.
[15]Мельников А. В., Волков С. Н., Нечаев М. Л. Математика финансовых обязательств. – М.: ГУ ВШЭ, 2001.
[16]Модильяни Ф., Миллер М. Сколько стоит фирма? – М.: Дело, 1999.
[17]Нiкбахт Е., Гроппеллi А. Фiнанси. – К.: Основи, 1993.
[18]Оксендал Б. Стохастические дифференциальные уравнения. – М: МЦНМО, 2002.
[19]Росс С., Вестерфилд Р., Джордан Б. Основы корпоративных финансов. – М.: Лаборатория базовых знаний, 2001.
[20]Фалин Г. И., Фалин А. И. Теория риска для актуариев в задачах. – М.: Мир, 2004.
[21]Фельмер Г., Шид А. Введение в стохастические финансы. Дискретное время. Перевод с английского. – М.: МЦНМО, 2008.
[22]Черваньов Д. М., Комашко О. В. Економетрика. Курс лекцiй. – К.: РВЦ КIЕМБСС, 1998.
[23]Четыркин Е.М. Финансовая математика. – М.: Дело, 2005.
[24]Шапкин А. Экономические и финансовые риски. – М.: Дашков и К◦, 2003.
[25]Шарп У. Ф., Александер Г. Дж., Бэйли Дж. В. Инвестиции. – М.: Инфра-М, 2001.
340
[26]Шепп Л., Ширяев А. Н. Новый взгляд на расчеты “Русского опциона” // Теория вероятностей и её применения.— 1994. – Т. 39. – • 1. – С. 130–149.
[27]Ширяев А. Н. Основы стохастической финансовой математики. – М.: Фазис, 1998. – Т. 1, 2.
[28]Ширяев А. Н., Кабанов Ю. М., Крамков Д. О., Мельников А. В. К теории расчетов опционов Европейского и Американского типов. Часть I. Дискретное время, Часть II. Непрерывное время // Теория вероятностей и её применения.— 1994. – Т. 39. – • 1. – С. 21–79, 80–129.
[29]Anthony M., Biggs N. Mathematics for Economics and Finance. Methods and Modelling. – Cambridge: Press Syndicate of the University of Cambridge, 1996.
[30]Back K. A Course in Derivative Securities: Introductin to Theory and Computation. – Berlin: Springer-Verlag, 2005.
[31]Barucci E. Financial Market theory. Equilibrium, E ciency and Information. – Berlin: Springer-Verlag, 2003.
[32]Baxter M., Rennie A. Financial Calculus: An Introduction to Derivative Pricing. – Cambridge: Cambridge University Press, 1996.
[33]Bingham N. H., Kiesel R. Risk-Neutral Valuation: Pricing and Hedging of Financial derivatives. 2nd Edition. – Berlin: Springer-Verlag, 2004.
[34]Black F., Scholes M. The pricing of options and corporate liabilities.// – Journal of Political Economy.— 1973. – • 3. – P. 637–659.
[35]Brealey R., Myers S., Marcus A. Fundamentals of Corporate Finance. – Boston: McGraw-Hill, 2001.
[36]Brigo D., Mercurio F. Interest Rate Models – Theory and Practice. – Berlin: Springer-Verlag, 2006.
341
[37]Campbell J. Y. Lo, A. W., MacKinlay A. C. The Econometrics of Financial Markets. – Princeton: Princetion University Press, 1993.
[38]Chen L. Interest Rate Dynamics (Lecture Notes in Economics and Mathematical Systems, 435). – New York: Springer, 1996.
[39]Daykin C. D. Practical Risk Theory for Actuaries. – London: Chapman & Hall, 1996.
[40]Dana R. A., Jeanblanc M. Financial Markets in Continuous Time. – Berlin: Springer-Verlag, 2002.
[41]Delbaen F., Schachermayer W. The Mathematics of Arbitrage. – Berlin: Springer-Verlag, 2006.
[42]Dokuchaev N. Dynamic Portfolio Strategies. Quantitative Methods and Empirical Rules for Incomplete Information. – Boston: Kluwer Academic Publishers, 2002.
[43]Du e D. Dynamic Asset Pricing Theory. – Princeton: Princeton University Press, 1996.
[44]Dupacova J., Hurt J., Stepan J. Stochastic Modeling in Economics and Finance. – Boston: Kluwer Academic Publishers, 2002.
[45]Elliott R., Kopp P. E. Mathematics of Financial Markets. – New York: Springer Finance, 1998.
[46]Etheridge A. Financial Calculus – Cambridge: Cambridge University Press, 2006.
[47]Gerber H. U. Life Insurance Mathematics. – Berlin: SpringerVerlag, 1997.
[48]Karatzas I., Shreve S. E. Methods of Mathematical Finance. – Berlin: Springer-Verlag, 1998.
[49]Kellerhals B.P. Asset Pricing. – Berlin: Springer-Verlag, 2004.
342
