Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИОТЕХНОЛОГИЯ.docx
Скачиваний:
14
Добавлен:
18.03.2015
Размер:
51.32 Кб
Скачать

МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

УНИВЕРСИТЕТ ИМ.М.АКМУЛЛЫ»

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра генетики

Направление 020400 –

Биология

3 курс бакалавриата

ЧУМАК МАРИЯ АНДРЕЕВНА

Промышленные процессы с использованием иммобилизованных ферментов

РЕФЕРАТ

по дисциплине «Введение в биотехнологию»

Научный руководитель: профессор Абрамов С. Н.

Уфа 2014

Содержание

Введение

3

Глава 1.

5

Глава 2.

Способы получения

6

Глава 3.

Применение

7

Заключение

17

Список литературы

18

Введение

Ферменты — это специфические катализаторы белковой природы, вырабатываемые клетками и тканями организмов.

Микробиологический метод получения ферментов - наиболее перспективен. Его преимущества заключаются в следующем: богатство ассортимента ферментов, синтезируемых микроорганизмами; возможность управления ферментативными системами и составом производимых препаратов; высокие скорости размножения микроорганизмов и возможность использования различных, в том числе доступных и недорогих субстратов. Ферменты в микробных клетках могут иметь как внутриклеточную локализацию, так и выделяться в окружающую среду. Последние более доступны для препаративного получения, поэтому в промышленных масштабах получают главным образом внеклеточные ферменты. Из описанных к настоящему времени более 2000 ферментов практическое значение имеют около 50 [1].

Иммобилизованные ферменты имеют ряд преимуществ в сравнении со свободными молекулами. Прежде всего такие ферменты, представляя собой гетерогенные катализаторы, легко отделяются от реакционной среды, могут использоваться многократно и обеспечивают непрерывность каталитического процесса. Кроме того, иммобилизация ведет к изменению свойств фермента: субстратной специфичности, устойчивости, зависимости активности от параметров среды. Иммобилизованные ферменты долговечны и в тысячи и десятки тысяч раз стабильнее свободных энзимов. Так, происходящая при температуре 65°С термоинактивация лактатдегидрогеназы, иммобилизованной в 60 %-м полиакриламидном геле, замедлена в 3600 раз по сравнению с нативным ферментом. Все перечисленное обеспечивает высокую экономичность, эффективность и конкурентоспособность технологий, использующих иммобилизованные ферменты.

Идеальные материалы, используемые для иммобилизации ферментов, должны обладать следующими основными свойствами: нерастворимостью; высокой химической и биологической стойкостью; значительной гидрофильностью; достаточной проницаемостью как для ферментов, так и для коферментов, субстратов и продуктов реакции; способностью носителя легко активироваться (переходить в реакционноспособную форму).

Естественно, ни один из используемых в настоящее время в качестве носителя материал не отвечает полностью перечислен­ным требованиям. Тем не менее существует широкий набор носи­телей, пригодных для иммобилизации определенных энзимов в конкретных условиях.

В зависимости от природы носители делятся на органические и неорганические материалы.

Глава 1

Иммобилизованный фермент (coupled enzyme, immobilized enzyme) [лат. immobilis — неподвижный; лат. fermentum — закваска] — искусственно получаемые препараты ферментов, молекулы которых адсорбированы на полимерной матрице или ковалентно связаны с ней, в результате чего сохраняется их каталитическая активность и значительно повышается устойчивость к денатурирующим воздействиям. И.ф. обычно не растворимы в воде; между двумя фазами возможен обмен молекулами субстрата, продуктов каталитических реакции, ингибиторов и активаторов. 

 Начало методу И.ф. было положено Дж. Нельсоном и Е. Гриффином в 1916 г., когда они адсорбировали на угле фермент инвертазу и показали, что он сохраняет в таком виде каталитическую активность. Сам термин «И.ф.» узаконен в 1971 г. и означает любое ограничение свободы передвижения белковых молекул фермента в пространстве.