Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_po_tsitologii.docx
Скачиваний:
496
Добавлен:
18.03.2015
Размер:
222.76 Кб
Скачать

27. Химический состав хромосом: Днк и белки.

Химическая и структурная организация хромосом Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: 1) хранение, наследственной информации; 2) использование этой информации для создания и поддержания клеточной организации; 3) регуляцию считывания наследственной информации; 4) самоудвоение генетического материала; 5) передачу его от материнской клетки дочерним. Главные химические компоненты хромосом представлены ДНК, основными (гистоновые) и кислыми (негистоновые) белками, на долю которых приходится соответственно 40% и около 20%. В хромосомах содержатся РНК, липиды, полисахариды, ионы металлов. В молекулах ДНК закодирована наследственная информация, что делает их ведущим функциональным компонентом хромосом. ДНК эукариотических клеток представлена следующими фракциями: 1) уникальные нуклеотидные последовательности; 2) повторы определенной последовательности; 3) повторы. Элементы хромосомы - центромер и хроматид

Гистоны представлены пятью главными фракциями и выполняют структурную и регуляторную роль. Число фракций негистоновых белков превышает 100. Среди них ферменты синтеза и процессинга РНК, редупликации и репарации ДНК. Кислые белки хромосом выполняют также структурную и регуляторную роль. РНК хромосом представлена отчасти продуктами транскрипции, еще не покинувшими место синтеза. Некоторым фракциям свойственна регуляторная функция. Регуляторная функция компонентов хромосом заключается в «запрещении» или «разрешении» считывания информации с молекулы ДНК. Элементарной структурой хромосомы, различимой с помощью электронного микроскопа, является нить диаметром 10—13 нм, представляющая собой комплекс ДНК и гистоновых белков (нуклеогистон). Толщина нити зависит от располагающихся по ее длине телец — нуклеосом. Диаметр межнуклеосомных участков менее 1,5 нм, что совпадает с толщиной биоспирали ДНК. Ядра телец образованы 8-ю молекулами гистонов 4-х, разных типов — Н2а, Н2b, НЗ и Н4. Они служат основой, на которую «накручены» фрагменты ДНК длиной примерно в 200 пар нуклеотидов. Гистон H1 «сшивает» витки ДНК. Функциональное значение нуклеосом неясно. Есть данные, что транскрибируемые фрагменты ДНК, кодирующие рРНК, не имеют нуклеосомной структуры. В отношении других генов есть указания, что при транскрипции нуклеосомная структура утрачивается. Закручивание молекул ДНК на гистоновые тельца уменьшает длину биоспирали ДНК в 7 раз, т. е. служит целям упаковки наследственного материала. Данные микроскопического и электронно-микроскопического изучения хроматина и митотических хромосом дают следующую схему структурной организации хромосомы. Биспираль ДНК диаметром 1,5 нм в результате скручивания и присоединения белка преобразуется в нуклеогистоновый комплекс с нуклеосомной структурой. Он имеет вид нити диаметром 10—13 нм. При дальнейшем скручивании и присоединении белков возникает нить диаметром 20—25 нм. Она обнаруживается с помощью электронного микроскопа как в интерфазных, так и в митотических хромосомах. В результате дальнейшего скручивания этой нити, происходящего многократно и дополняемого складыванием, образуются митотические хромосомы. Эта схема носит предварительный характер, она объединяет области интереса цитогенетика медико-генетической консультации (микроморфология митотических хромосом) и специалиста по функциональной организации хромосомы на ультраструктурном и молекулярном уровнях. Реорганизация нити нуклеогистона с образованием более компактной структуры называется спирализацией (конденсацией), процесс, обратный описанному — деспирализацией (деконденсацией). Благодаря спирализации достигается плотная упаковка наследственного материала, что важно при перемещениях хромосом в процессе митоза. О плотности упаковки свидетельствуют следующие цифры. Ядро соматической диплоидной клетки человека содержит около 6 пг ДНК, что соответствует нити нуклеогистона длиной почти 2 м. Совокупная же длина всех хромосом клетки человека в метафазе митоза равна 150 мкм. Биоспираль из 100 г ДНК человека, если ее вытянуть в одну нить, покроет расстояние 2,5 X 1010 км, что более чем в 100 раз превосходит расстояние от Земли до Солнца. Изложенные сведения об укладке нити нуклеогистона согласуются с генетическими представлениями о непрерывности и линейности расположения генов по длине хромосом. Они соответствуют допущению, что каждая хромосома содержит одну двойную спираль ДНК. В особых, так называемых политенных хромосомах клеток насекомых одновременно присутствует несколько двойных спиралей ДНК. Так как они уложены «бок в бок», такая конструкция совместима с принципом линейного и непрерывного размещения генов. Для изучения кариотипа особое значение имеют митотические метафазные хромосомы. Они образованы двумя хроматидами. Последние являются дочерними хромосомами, которые в процессе митоза разойдутся в дочерние клетки. Хроматиды соединены в области первичной перетяжки (центромеры, кинетохора), к которой прикрепляются нити веретена деления. Фрагменты, на которые первичная перетяжка лепит хромосому, называются плечами, а концы хромосомы — теломерами. В зависимости от положения первичной перетяжки различают метацентрические (равноплечие), субметацентрические (умеренно неравноплечие), акроцентрические и субакроцентрнческие (выражение неравноплечие) хромосомы. У человека метацентрическими являются хромосомы 1 и 3 пар, Х-хромосома, субметацентрическими 2,6—12, 16—20 пары, акроцентрическими и субакроцентрическими— 4—5, 13—15, 21—22 пары и Y-хромосома. При использовании некоторых методов приготовления препаратов в хромосомах видны полу-хроматиды, однако вопрос об их присутствии в клетке нельзя считать решенным. Возможно, они являются результатом воздействия на вещество хромосомы материала, используемого для приготовления препарата. Некоторые хромосомы имеют вторичные перетяжки. Они возникают в участках неполной конденсации хроматина, например, в околоцентромерных участках длинного плеча 1, 9 и 16 хромосом человека. Вторичные перетяжки отделяют концевые участки коротких плеч 13—15, 21—22 хромосом человека в виде спутников. В области вторичных перетяжек некоторых хромосом располагаются ядрышковые организаторы. Они содержат гены, кодирующие рРНК, и служат местом образования ядрышка. Описанные структурные особенности используют для идентификации хромосом. Хотя для интерфазных хромосом в целом свойственно деспирализованное состояние, степень спирализации отдельных фрагментов варьирует. Выделяют эухроматин, структурный гетерохроматин и факультативный гетерохроматин. Эухроматин образован участками хромосом, которые деспирализируются в конце митоза. В интерфазных ядрах — это слабо окрашивающиеся нитчатые структуры. В области эухроматина располагаются структурные гены. Структурный гетерохроматин отличается высокоспирализованным состоянием, которое сохраняется на протяжении всего митотического цикла. Он занимает постоянные участки, сходные в гомологических хромосомах. Обычно это фрагменты, прилегающие к области центромеры, а также расположенные на свободных концах (теломерах) хромосом. Этот вид гетерохроматина структурных генов, по-видимому, не содержит и функция его не ясна. В каждой хромосоме свой порядок расположения эу- и гетерохроматиновых участков. Это используется для идентификации отдельных хромосом в цитогенетических исследованиях человека. Факультативный гетерохроматин образуется при спирализации одной из двух гомологических хромосом. Типичный пример — генетически неактивная Х-хромосома соматических клеток женских особей млекопитающих и человека (тельца полового хроматина). Функциональная роль факультативной гетерохроматизации заключается в компенсации (снижении) дозы определенных генов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]