
- •1.Клеочная теория, этапы развития значения для биологии.
- •2.Общие черты и различия в строении и делении клеток про- и эукариот.
- •4. Клетки растений и животных, общие черты и отичия.
- •5. Световой микроскоп, его основные характеристики. Фазово-контрастная, интерференционная и ультрафиолетовая микроскопия.
- •6. Разрешающая способность микроскопа. Возможности световой микроскопии. Изучение фиксированных клеток.
- •7. Методыавторадиографии, клеточных культур, дифференциального центрифугирования.
- •8.Метод электронной микроскопии, многообразие его возможностей. Плазматическая мембрана, особенности строения и функций.
- •9.Поверхностный аппарат клетки.
- •11.Клеточная стенка растений. Строение и функции – оболочки клеток растений, животных и прокариот, сравнение.
- •13. Органеллы цитоплазмы. Мембранные органоиды, их общая характеристика и классификация.
- •14. Эпс гранулярная и гладкая. Строение и особенности функционирования в клетках равного типа.
- •15. Комплекс Гольджи. Строение и функции.
- •16. Лизасомы, функциональное многообразие, образование.
- •17. Вакулярный аппарат растительных клеток, компоненты и особенности организации.
- •18. Митохондрии. Строение и функции митохондрий клетки.
- •19. Функции митохондрий клетки. Атф и его роль в клетке.
- •20. Хлоропласты, ультраструктура, функции в связи с процессом фотосинтеза.
- •21. Многообразие пластид, возможные пути их взаимопревращения.
- •23. Цитоскелет. Строение, функции, особенности организации в связи с клеточным циклом.
- •24. Роль метода иммуноцитохимии в изучение цитоскелета. Особенности организации цитоскелета в мышечных клетках.
- •25. Ядро в клетках растений и животных, строение, функции, взаимосвязь ядра и цитоплазмы.
- •26. Пространственная организация интрфазных хромосом внутри ядра, эухроматин, гетерохроматин.
- •27. Химический состав хромосом: Днк и белки.
- •28. Уникальные и повторяющиеся последовательности днк.
- •29.Белки хромосом гистоны, негистоновые белки; их роль в хроматине и хромосомах.
- •30. Виды рнк, их функции и образование в связи с активностью хроматина. Центральная догма клеточной биологии: днк-рнк-белок. Роль компонентов в ее реализации.
- •32. Митотические хромосомы. Морфологическая организация и функции. Кариотип ( на примере человека).
- •33. Репродукция хромосом про- и эукариот, взаимосвязь с клеточным циклом.
- •34. Политенные и хромосомы типа ламповых щеток. Строение ,функции, отличие от метафазных хромосом.
- •36. Ядрышко
- •37. Ядерная оболочка строение,функции,роль ядра при взаимодействии с цитоплазмой.
- •38.Клеточный цикл, периоды и фазы
- •39. Митоз как основной тип деления.Открытый и закрытый митоз.
- •39. Стадии митоза.
- •40.Митоз,общие черты и отличия.Особенности митоза у растений и у животных:
- •41.Мейоз значение, характеристика фаз, отличие от митоза.
23. Цитоскелет. Строение, функции, особенности организации в связи с клеточным циклом.
Цитоскелет - совокупность нитевидных белковых структур – микротрубочек и микрофиламентов, составляющих опорно-двигательную систему клетки. Цитоскелетом обладают только эукариотические клетки, в клетках прокариот (бактерий) его нет, что является важным различием этих двух типов клеток. Цитоскелет придаёт клетке определённую форму даже при отсутствии жёсткой клеточной стенки. Он организует движение органоидов в цитоплазме (т. н. течение протоплазмы), лежащее в основе амёбоидного движения. Цитоскелет легко перестраивается, обеспечивая в случае необходимости изменение формы клеток. Способность клеток изменять форму обусловливает перемещение клеточных пластов на ранних стадиях зародышевого развития. При делении клетки (митозе) цитоскелет «разбирается» (диссоциирует), а в дочерних клетках вновь происходит его самосборка.
Цитоскелет выполняет три главные функции.
1. Служит клетке механическим каркасом, который придает клетке типическую форму и обеспечивает связь между мембраной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.
2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках , но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.
3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.
24. Роль метода иммуноцитохимии в изучение цитоскелета. Особенности организации цитоскелета в мышечных клетках.
Иммуноцитохимический анализ - метод, позволяющий проводить иммунологический анализ цитологического материала в условиях сохранения морфологии клеток. ИЦХ – один из множества видов иммунохимического метода: иммуноферментного, иммунофлюоресцентного, радиоиммунного и т.п.Основой ИЦХ-метода является иммунологическая реакция антигена и антитела.
Цитоплазма эукариотических клеток пронизана трехмерной сеткой из белковых нитей (филаментов), называемой цитоскелетом. В зависимости от диаметра филаменты разделяются на три группы: микрофиламенты (6-8 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Все эти волокна представляют собой полимеры, состоящие из субъединиц особых глобулярных белков.
А. Актин
Микрофиламенты (актиновые нити) состоят из актина — белка, наиболее распространенного в эукариотических клетках. Актин может существовать в виде мономера (G-актин, «глобулярный актин») или полимера (F-актин, «фибриллярный актин»). G-актин — асимметричный глобулярный белок (42 кДа), состоящий из двух доменов. По мере повышения ионной силы G-актин обратимо агрегирует, образуя линейный скрученный в спираль полимер, F-актин. Молекула G-актина несет прочно связанную молекулу АТФ (АТР), которая при переходе в F-актин, медленно гидролизуется до АДФ (ADP), т.е. F-актин проявляет свойства АТФ-азы.
Б. Белки промежуточных волокон
Структурными элементами промежуточных волокон являются белки, принадлежащие к пяти родственным семействам и проявляющие высокую степень клеточной специфичности. Типичными представителями этих белков являются цитокератины, десмин, виментин, кислый фибриллярный глиапротеин [КФГП (GFAP)] и нейрофиламент. Все эти белки имеют в центральной части базовую стержневую структуру, которая носит название суперспирализованной α-спирали . Такие димеры ассоциируют антипараллельно, образуя тетрамер. Агрегация тетрамеров по принципу "голова к голове" дает протофиламент. Восемь протофиламентов образуют промежуточное волокно.
В отличие от микрофиламентов и микротрубочек свободные мономеры промежуточных волокон едва ли встречаются в цитоплазме. Их полимеризация ведет к образованию устойчивых неполярных полимерных молекул.
В. Тубулин
Микротрубочки построены из глобулярного белка тубулина, представляющего собой димер α- и β-субъединиц . Тубулиновые мономеры связывают ГТФ (GTP), который медленно гидролизуется и ГДФ (GTP). С микротрубочками ассоциируют два вида белков: структурные белки лки-транслокаторы.