
- •1.Клеочная теория, этапы развития значения для биологии.
- •2.Общие черты и различия в строении и делении клеток про- и эукариот.
- •4. Клетки растений и животных, общие черты и отичия.
- •5. Световой микроскоп, его основные характеристики. Фазово-контрастная, интерференционная и ультрафиолетовая микроскопия.
- •6. Разрешающая способность микроскопа. Возможности световой микроскопии. Изучение фиксированных клеток.
- •7. Методыавторадиографии, клеточных культур, дифференциального центрифугирования.
- •8.Метод электронной микроскопии, многообразие его возможностей. Плазматическая мембрана, особенности строения и функций.
- •9.Поверхностный аппарат клетки.
- •11.Клеточная стенка растений. Строение и функции – оболочки клеток растений, животных и прокариот, сравнение.
- •13. Органеллы цитоплазмы. Мембранные органоиды, их общая характеристика и классификация.
- •14. Эпс гранулярная и гладкая. Строение и особенности функционирования в клетках равного типа.
- •15. Комплекс Гольджи. Строение и функции.
- •16. Лизасомы, функциональное многообразие, образование.
- •17. Вакулярный аппарат растительных клеток, компоненты и особенности организации.
- •18. Митохондрии. Строение и функции митохондрий клетки.
- •19. Функции митохондрий клетки. Атф и его роль в клетке.
- •20. Хлоропласты, ультраструктура, функции в связи с процессом фотосинтеза.
- •21. Многообразие пластид, возможные пути их взаимопревращения.
- •23. Цитоскелет. Строение, функции, особенности организации в связи с клеточным циклом.
- •24. Роль метода иммуноцитохимии в изучение цитоскелета. Особенности организации цитоскелета в мышечных клетках.
- •25. Ядро в клетках растений и животных, строение, функции, взаимосвязь ядра и цитоплазмы.
- •26. Пространственная организация интрфазных хромосом внутри ядра, эухроматин, гетерохроматин.
- •27. Химический состав хромосом: Днк и белки.
- •28. Уникальные и повторяющиеся последовательности днк.
- •29.Белки хромосом гистоны, негистоновые белки; их роль в хроматине и хромосомах.
- •30. Виды рнк, их функции и образование в связи с активностью хроматина. Центральная догма клеточной биологии: днк-рнк-белок. Роль компонентов в ее реализации.
- •32. Митотические хромосомы. Морфологическая организация и функции. Кариотип ( на примере человека).
- •33. Репродукция хромосом про- и эукариот, взаимосвязь с клеточным циклом.
- •34. Политенные и хромосомы типа ламповых щеток. Строение ,функции, отличие от метафазных хромосом.
- •36. Ядрышко
- •37. Ядерная оболочка строение,функции,роль ядра при взаимодействии с цитоплазмой.
- •38.Клеточный цикл, периоды и фазы
- •39. Митоз как основной тип деления.Открытый и закрытый митоз.
- •39. Стадии митоза.
- •40.Митоз,общие черты и отличия.Особенности митоза у растений и у животных:
- •41.Мейоз значение, характеристика фаз, отличие от митоза.
20. Хлоропласты, ультраструктура, функции в связи с процессом фотосинтеза.
Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно составляет от 20 до 100 на клетку. Химический состав хлоропластов достаточно сложен и может быть охарактеризован следующими средними данными (% на сухую массу): белок — 35—55; липиды—20—30; углеводы—10; РНК—2—3; ДНК — до 0,5; хлорофилл — 9; каротиноиды — 4,5.
Важно отметить, что многие белки хлоропластов обладают ферментативной активностью. Действительно, в хлоропластах сосредоточены все ферменты, принимающие участие в процессе фотосинтеза (окислительно-восстановительные, синтетазы, гидролазы). В настоящее время доказано, что в хлоропластах, так же как и в митохондриях, имеется своя белоксинтезирующая система. Многие из ферментов, локализованных в хлоропластах, являются двухкомпонентными. Во многих случаях простетическая группа ферментов — это различные витамины. В хлоропластах сосредоточены многие витамины и их производные (витамины группы В, К, Е, D). В хлоропластах находится 80% Fe, 70% Zn, около 50% Сu от всего количества этих элементов в листе.
Внутреннее строение хлоропластов, их ультраструктура была раскрыта после того, как появился электронный микроскоп. Оказалось, что хлоропласты окружены двойной оболочкой (мембраной). Толщина каждой оболочки 7,5—10 нм, расстояние между ними 10—30 нм. Внутреннее пространство хлоропластов заполнено бесцветным содержимым — стромой и пронизано мембранами (ламеллами). Ламеллы, соединенные друг с другом, образуют как бы пузырьки — тилакоиды (греч. «тилакоидес» — мешковидный). В хлоропластах тилакоиды двух типов. Короткие тилакоиды собраны в пачки и расположены друг над другом, напоминая стопку монет. Эти стопки называются гранами, а составляющие их ламеллы — ламеллами гран. Между гранами параллельно друг другу располагаются длинные тилакоиды. Составляющие их ламеллы получили название — ламеллы стромы. Между отдельными тилакоидами в стопках гран имеются узкие щели. Относительно связи между ламеллами гран и ламеллами стромы имеются разные точки зрения. Т. Вейер предложил гранулярно-решетчатую модель, согласно которой внутренние пространства всех тилакоидов соединены между собой.
Таким образом, в хлоропластах имеется как бы два раздельных пространства — внутреннее (внутри тилакоидов) и внешнее (вне тилакоидов). У большинства водорослей гран нет, а ламеллы собраны в группы (пачки) по 2—8 штук. Не во всех случаях и у высших растений хлоропласта имеют гранальную структуру. Так, в листьях кукурузы имеются два вида хлоропластов. В клетках мезофилла содержатся мелкие хлоропласты гранального строения. В клетках обкладки, окружающих листовые сосудистые пучки, хлоропласты крупные и гран не содержат.
В строме хлоропластов имеются нити ДНК, рибосомы, крахмальные зерна. Зеленый пигмент хлорофилл в виде комплекса с белками (пигмент-белковые комплексы) сосредоточен главным образом в ламеллах гран и частично в ламеллах стромы. На поверхностях ламелл имеются округлые частицы, в которых локализован фермент, катализирующий синтез АТФ (АТФ-синтетаза). Этот фермент связан с белком, расположенным в самой мембране.
Пластиды, так же как и митохондрии, не возникают вновь, а размножаются путем деления. В яйцеклетке имеются так называемые инициальные частицы, из которых в дальнейшем и развиваются как митохондрии, так и пластиды. Эта точка зрения подтверждается явлением так называемой цитоплазматической или пластидной (внехромосомной) наследственности. Как известно, у раздельнополых организмов женские и мужские гаметы вносят в зиготу одинаковый вклад в отношении генов. Однако женская гамета содержит во много раз больше цитоплазмы и инициальных частиц. Корренс показал, что окраска листьев у пестролистных растений наследуется исключительно по материнской линии. Так, оказалось, что цветки, развившиеся на зеленых побегах, дают семена, из которых вырастают растения с зелеными листьями. Цветки на ветвях с пестрыми листьями дают семена, из которых вырастают пестролистные растения. Окраска листьев растений, с цветков которых собиралась пыльца для опыления, не имеет значения для потомства. Эти опыты и привели к предположению, что хлоропласты представляют собой генетически автономные образования и их свойства наследуются по материнской линии. Хлоропласты содержат специфические молекулы ДНК и обладают белоксинтезирующей системой. Однако хлоропласты нельзя отнести к полностью автономным образованиям. В самом деле, количество находящейся в пластидах ДНК не может обеспечить все разнообразие пластидных белков. Частично белки хлоропластов образуются под контролем ядра. Так же как и для митохондрии, начальной стадией роста хлоропластов являются инициальные частицы. Эти частицы — глобулярные образования, окруженные двойной мембраной значительно более плотной консистенции по сравнению с окружающей гиалоплазмой. Инициальные частицы увеличиваются в размере и приобретают форму двояковыпуклой линзы. Одновременно их внутренняя мембрана начинает разрастаться, образуя складки. От складок отшнуровываются пузырьки (тилакоиды), которые располагаются параллельно и пронизывают всю строму. На этой стадии развития частицы становятся видимыми в световой микроскоп (0,3—0,5 мкм) — это уже пропластиды. Для дальнейшего развития структуры пропластид необходим свет. На свету образуется хлорофилл. Молекулы хлорофилла локализуются в мембранах. Именно на свету образуются два типа тилакоидов. Длинные тилакоиды тянутся через все продольное сечение пластид и образуют тилакоиды стромы. Короткие тилакоиды располагаются стопкой друг над другом и образуют тилакоиды гран. Пластиды достигают окончательного размера.
Физиологические особенности хлоропластов. Важным свойством хлоропластов является их способность к движению. Хлоропласты передвигаются не только вместе с цитоплазмой, но способны и самопроизвольно изменять свое положение в клетке. Скорость движения хлоропластов составляет около 0,12 мкм/с. Хлоропласты могут быть распределены в клетке равномерно, однако чаще они скапливаются около ядра и вблизи клеточных стенок. Большое значение для расположения хлоропластов в клетке имеют направление и интенсивность освещения. При малой интенсивности освещения хлоропласты становятся перпендикулярно к падающим лучам, что является приспособлением к лучшему их улавливанию. При высокой освещенности хлоропласты передвигаются к боковым стенкам и поворачиваются ребром к падающим лучам. В зависимости от освещения может также меняться и форма хлоропластов. При более высокой интенсивности света их форма становится ближе к сферической.
Основная функция хлоропластов — это процесс фотосинтеза. В 1955 г. Д. Арнон показал, что в изолированных хлоропластах может быть осуществлен весь процесс фотосинтеза. Важно отметить, что хлоропласты имеются не только в клетках листа. Они встречаются в клетках не специализирующихся на фотосинтезе органов: в стеблях, колосковых чешуйках и остях колосьев, корнеплодах, клубнях картофеля и т. д.
В ряде случаев зеленые пластиды обнаруживаются в тканях, расположенных не в наружных, освещенных частях растений, а в слоях, удаленных от света: в тканях центрального цилиндра стебля, в средней части луковицы лилейных, а также в клетках зародыша семени многих покрытосеменных растений. Последнее явление (хлорофиллоносность зародыша) привлекает внимание систематиков растений. Имеются предложения разделить все покрытосеменные растения на две большие группы: хлороэмбриофиты и лейкоэмбриофиты, содержащие и не содержащие хлоропласты в зародыше (М.С. Яковлев).
Исследования показали, что структура хлоропластов, расположенных в других органах растения, так же как и состав пигментов, сходны с хлоропластами листа. Это дает основания считать, что они способны к фотосинтезу. В том случае, если они подвергаются освещению, по-видимому, в них действительно происходит фотосинтез. Так, фотосинтез хлоропластов, расположенных в остях колоса, может составлять около 30% от общего фотосинтеза растения. Позеленевшие на свету корни способны к фотосинтезу. В хлоропластах, находящихся в кожуре плода до определенного этапа его развития, также может идти фотосинтез. Согласно предположению А.Л. Курсанова, хлоропласты, расположенные вблизи проводящих путей, выделяя кислород, способствуют повышению интенсивности обмена веществ ситовидных трубок.
Вместе с тем роль хлоропластов не ограничивается их способностью к фотосинтезу. В определенных случаях они могут служить источником питательных веществ (Е.Р. Гюббенет). Хлоропласты содержат большое количество витаминов, ферментов и даже фитогормонов (в частности гиббереллина и абсцизовой кислоты). В условиях, при которых ассимиляция исключена, зеленые пластиды могут играть активную роль в процессах обмена веществ. Известно, что присутствие листьев, помещенных в условия, исключающие фотосинтез (закрывание землей), улучшает рост растений. Показано благоприятное влияние листьев на процесс сращивания привоя и подвоя.