Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОС / MODUL_7_geometria.doc
Скачиваний:
30
Добавлен:
18.03.2015
Размер:
847.87 Кб
Скачать

Свойства осевой симметрии.

Определение. Точка Р называется неподвижной точкой преобразования f если f(P) = Р, т. е. образ точки Р совпадает с этой точкой.

1°. Осевая симметрия имеет бесконечное множество неподвижных точек - это ось симметрии.

2°. Осевая симметрия всякую прямую, перпендикулярную оси симметрии, отображает на себя.

3°. Если прямая а пересекает ось симметрии в точке К, то симметричная ей прямая a` пересекает ось симметрии в той же точке К, при этом образует с осью угол, равный углу между прямой а и осью (рис. 1).

4°. Если прямая а параллельна оси симметрии, то симметричная ей прямая а' тоже параллельна оси симметрии, при этом она отстоит от оси на таком же расстоянии, что и прямая а (рис. 2).

5°. Осевая симметрия отображает окружность в равную ей окружность,

6°. Если центр окружности принадлежит оси симметрии, то окружность симметрична самой себе.

Опр. Прямая L называется осью симметрии фигуры Ф, если осевая симметрия SL, отображает эту фигуру на себя.

Параллельный перенос плоскости

Опр. Параллельным переносом плоскости, обозначаемым , на вектор a, называется преобразование плоскости, которое каждой точке М ставит в соответствие точку М' по закону: ММ' = а.

Свойства параллельного переноса.

1°. Параллельный перенос (на ненулевой вектор) не имеет неподвижных точек.

2°. Параллельный перенос отображает прямую, параллельную вектору перекоса, в себя.

3°. Параллельный перенос отображает прямую, не параллельную вектору переноса, в параллельную ей прямую.

4°, Любую из двух равных окружностей можно отобразить в другую окружность параллельным переносом на вектор, соединяющий центры данных окружностей.

Поворот плоскости

Определение. Поворотом плоскости, обозначаемым RφO, с центром поворота О и углом поворота φ называется преобразование плоскости, которое каждой точке М ставит в соответствие точку М' по закону:

1. ОМ = ОМ'

2. угол MOM' = φ (ориентированный угол).

формулы поворота.

x' = х cos φ - у sin φ,

у' = x sin φ + у cos φ. (1.7.1)

Характерные свойства поворота.

1°. Поворот плоскости имеет одну неподвижную точку -центр поворота.

2°. При повороте плоскости угол между прямой и ее образом равен углу поворота.

Центральная симметрия плоскости.

Определение. Центральной симметрией Zo плоскости с центром симметрии О называется преобразование плоскости, которое каждой точке М ставит в соответствие точку М' по закону: М' € ОМ; ОМ = ОМ', М и М' лежат по разные стороны от точки О.

свойства центральной симметрии.

1°. Центральная симметрия имеет одну неподвижную точку - центр симметрии.

2°. Центральная симметрия отображает всякую прямую, проходящую через центр симметрии, на себя,

3°. Центральная симметрия отображает всякую прямую, не проходящую через центр симметрии, на параллельную ей прямую, иначе говоря, центрально-симметричные прямые параллельны.

4°. Окружность центрально-симметрична самой себе относительно своего центра.

5°. Для любых двух равных окружностей существует центральная симметрия, отображающая одну окружность на другую. Центром симметрии является середина отрезка, соединяющего центры окружностей.

Опр. Скользящей симметрией , плоскости называется композиция параллельного переноса Ta и осевой симметрии Sl, при этом вектор а\\£. Таким образом, по определению Sl,a = SloTa

формулы скользящей симметрии

х'=х + а1, y`=-y (1-9.3)

Опр. Гомотетией плоскости с центром гомотетии О и коэффициентом гомотетии к <> 0 называется преобразование плоскости, которое всякой точке М плоскости ставит в соответствие точку М' по закону:

Вектор ОМ` = KOM. (1.13.1)

к> 0 к < 0

Обозначение. Hok - гомотетия плоскости с центром гомотетии О и коэффициентом гомотетии к.

Определение. Гомотетичными фигурами называются фигуры Ф и Ф' = Hok (Ф).

1)Гомотетичные точки М и М лежат на одной прямой с центром гомотетии О. 2)Точки М и М' лежат по одну сторону от центра О, если к > 0, и — по разные стороны, если к < 0. 3)ОМ` =|к|*ОМ.

4) Гомотетия плоскости является при: к = 1 — тождественным преобразованием; к = — 1 — центральной симметрией.

Основное свойство гомотетии. Для любых точек М, N и их образов М', N' имеет место равенство: вектора M`N`=кMN (1.13.5)

Следствия.

1). Гомотетия с коэффициентом к является преобразова­нием подобия с коэффициентом подобия |к|,

2). Векторы M'N' MN, если k > 0, и M'N' MN, если к < 0.

3). Гомотетия плоскости обладает всеми свойствами преобразования подобия, в частности: прямую отображает в прямую, параллельные прямые — в параллельные прямые, изменяет все расстояния в одном и том же отношении, сохраняет углы.

свойства гомотетии,

1°. Гомотетия плоскости имеет одну неподвижную точку — центр гомотетии,

2°. Гомотетия плоскости отображает прямую, проходящую через центр гомотетии, в себя. Иначе говоря, прямая, проходящая через центр гомотетии, гомотетична самой себе.

3°. Гомотетия плоскости (k<>1) отображает прямую, не проходящую через центр гомотетии, в параллельную ей прямую, также не проходящую через центр гомотетии. Иначе говоря, гомотетичные прямые параллельны.

4°. Гомотетия плоскости отображает окружность, центр которой совпадает с центром гомотетии, в концентрическую окружность, при этом радиусы окружностей связаны соотношением r' = \к\r.

5°. Всякие две неравные окружности гомотетичны друг другу, при этом, если окружности не являются концентрическими, существуют две гомотетии, отображающие одну из них в другую.

Опр. Пусть имеются две аффинные системы координат Ое1 е2 и О'e`1e`2 Тогда преобразование плоскости, которое каждой точке М с координатами (х,у) относительно Оe1е2 ставит в соответствие точку М' с теми же координатами (х.у), но относительно O'e'1e'2, называется аффинным преобразованием, плоскости.

Основное свойство. Аффинное преобразование плоскости сохраняет простое отношение трех точек прямой.

Соседние файлы в папке ГОС