
- •Предисловие
- •1. физические основы механики
- •1.1. кинематика материальной точки
- •1.1.1. Общие понятия механики.
- •1.1.2. Кинематика точки
- •1.1.3. Скорость
- •1.1.4. Ускорение
- •1.1.5. Примеры
- •1.2. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ
- •1.2.1. Основные понятия
- •1.2.2. Законы динамки поступательного движения
- •1.2.3. Вес тела
- •1.2.4. Инерциальные системы отсчета
- •1.2.5. Принцип относительности Галилея
- •1.2.6. Неинерциальные системы отсчета. Силы инерции
- •1.2.7. Закон сохранения импульса
- •1.2.9. Центр инерции
- •1.3. работа и энергия
- •1.3.1. Работа
- •1.3.2. Энергия
- •1.3.3. Кинетическая и потенциальная энергии
- •1.3.4. Закон сохранения механической энергии
- •1.3.5. Удар абсолютно упругих и неупругих тел
- •1.4. вращательное движение твердого тела
- •1.4.1. Кинематика вращательного движения
- •1.4.2. Кинетическая энергия вращательного движения. Момент инерции
- •1.4.3. Основное уравнение динамики вращательного движения
- •2. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА
- •2.1.1. Предмет молекулярной физики
- •2.1.2. Термодинамические параметры
- •2.1.3. Идеальный газ
- •2.1.4. Основное уравнение МКТ газов для давления
- •2.2. движение газовых молекул
- •2.2.1. Скорость теплового движения молекул
- •2.2.2. Распределение молекул по скоростям (закон Максвелла)
- •2.2.3. Закон распределения Больцмана
- •2.2.4. Число столкновений и средняя длина свободного пробега молекул
- •2.3. первое начало термодинамики
- •2.3.1. Внутренняя энергия идеального газа
- •2.3.3. Работа при расширении газа
- •2.3.5. Адиабатический процесс
- •2.4. второе начало термодинамики
- •2.4.1. Характеристики тепловых процессов
- •2.4.2. Принцип действия тепловой машины
- •2.4.3. Второе начало термодинамики
- •2.4.4. Энтропия
- •2.5. реальные газы
- •2.5.1. Отклонение свойств газов от идеальных
- •2.5.3. Критическое состояние вещества
- •2.6. жидкости
- •2.6.1. Свойства жидкостей
- •2.6.2. Поверхностное натяжение
- •2.6.3. Явление смачивания
- •2.6.5. Капиллярность
- •2.6.6. Тонкие слои жидкости
- •2.6.7. Поверхностно-активные вещества. Адсорбция
- •3. электричество и магнетизм
- •3.1. электрические заряды и электрическое поле
- •3.1.1. Взаимодействие тел
- •3.1.2. Электрический заряд
- •3.1.3. Закон Кулона
- •3.1.4. Единицы заряда
- •3.1.5. Электрическое поле
- •3.1.7. Теорема Гаусса
- •3.2. потенциал электрического поля
- •3.2.1. Работа сил электрического поля
- •3.2.3. Потенциал электрического поля
- •3.2.5. Эквипотенциальные поверхности
- •3.3. электростатика диэлектриков
- •3.3.1. Проводники и диэлектрики
- •3.3.2. Поляризационные заряды в диэлектриках
- •3.3.4. Типы диэлектриков
- •3.3.5. Вектор поляризации
- •3.3.6. Поляризация диэлектриков
- •3.3.7. Вектор поляризации и связанные заряды
- •3.3.8. Электрическое поле в диэлектриках
- •3.3.9. Теорема Гаусса для диэлектриков. Электрическое смещение
- •3.3.10. Сегнетоэлектрики
- •3.4.1. Электрическое поле заряженного проводника
- •3.4.2. Электроемкость
- •3.4.3. Емкость проводящей сферы
- •3.4.4. Конденсаторы
- •3.4.5. Энергия электростатического поля
- •3.5. постоянный электрический ток
- •3.5.1. Электрический ток
- •3.5.2. Сила и плотность тока
- •3.5.3. Источники тока. ЭДС
- •3.5.4. Закон Ома. Сопротивление проводников
- •3.5.5. Правила Кирхгофа
- •3.5.6. Работа и мощность тока
- •3.6. электропроводность металлов
- •3.6.1. Свободные электроны в проводниках
- •3.6.2. Свойства электронного газа
- •3.7. ток в полупроводниках
- •3.7.1. Полупроводники
- •3.7.2. Собственная проводимость полупроводников
- •3.7.3. Примесная проводимость полупроводников
- •3.7.4. Применение полупроводников
- •3.8. магнитное поле
- •3.8.1. Магнитные силы
- •3.9. магнитное поле проводников с током
- •3.9.1. Магнитное поле токов
- •3.9.3. Магнитный поток
- •3.9.5. Закон полного тока
- •3.10. электромагнитная индукция
- •3.10.1. Закон электромагнитной индукции
- •3.10.2. Правило Ленца
- •3.10.3. Возникновение индукционного тока в витке
- •3.10.4. Явление самоиндукции
- •3.10.5. Магнитная проницаемость вещества
- •3.10.6. Энергия магнитного поля
- •3.11. магнитные свойства веществ
- •3.11.1. Магнитное поле в веществе. Вектор намагничивания
- •3.11.3. Элементарные носители магнетизма
- •3.11.4. Диамагнетизм
- •3.11.5. Парамагнетизм
- •3.11.6. Ферромагнетики
- •3.12. уравнения максвелла
- •3.12.1. Общая характеристика уравнений
- •3.12.3. Второе уравнение Максвелла. Ток смещения
- •3.12.4. Полная система уравнений Максвелла
- •4. КОЛЕБАНИЯ И ВОЛНЫ
- •4.1. колебательное движение
- •4.1.1. Общие сведения о колебаниях
- •4.1.2. Механические колебания
- •4.1.4. Гармонические колебания в электрической системе
- •4.1.6. Сложение двух перпендикулярных гармонических колебаний
- •4.2. свободные и вынужденные колебания
- •4.2.1. Затухающие колебания
- •4.2.2. Характеристики затухания
- •4.2.3. Вынужденные колебания
- •4.3.1. Образование и распространение волн в упругой среде
- •4.3.2. Уравнение бегущей волны
- •4.3.3. Энергия упругих волн
- •4.4. электромагнитные волны
- •4.4.1. Свойства электромагнитных волн
- •4.4.3. Шкала электромагнитных волн
- •5. ОПТИКА
- •5.1. ИНТЕРФЕРЕНЦИЯ СВЕТА
- •5.1.1. Предмет оптики
- •5.1.2. Световая волна
- •5.1.3. Интерференция волн. Когерентность
- •5.2. Дифракция света
- •5.2.2. Метод зон Френеля. Прямолинейное распространение света
- •5.2.3. Дифракция на щелях
- •5.3.1. Естественный и поляризованный свет
- •5.3.4. Закон Малюса
- •5.3.5. Поляризация при отражении и преломлении
- •5.3.6. Вращение плоскости поляризации
- •5.3.7. Применение поляризации
- •5.4.1. Проблема теплового излучения
- •5.4.2. Законы теплового излучения абсолютно черного тела
- •5.4.3. «Ультрафиолетовая катастрофа»
- •5.4.4. Квантовая гипотеза Планка
- •5.4.5. Фотоэффект
- •5.4.6. Фотон и его свойства
- •6. ЭЛЕМЕНТЫ АТОМНОЙ ФИЗИКИ
- •6.1. введение в квантовую механику
- •6.1.1. Волновые свойства частиц
- •6.1.2. Физический смысл волн де Бройля
- •6.1.3. Волновая функция
- •6.1.4. Соотношение неопределенностей
- •6.2. квантовомеханическое описание движения частиц
- •6.2.1. Уравнение Шредингера
- •6.2.2. Частица в потенциальной яме
- •6.3. строение атома
- •6.3.1. Корпускулярная модель атома
- •6.3.2. Квантовомеханическое описание водородного атома
- •6.4. многоэлектронные атомы
- •6.4.1. Спин электрона
- •6.4.2. Принцип Паули
- •6.4.3. Электронная структура оболочек атомов
- •6.4.4. Рентгеновские лучи
- •7. ЭЛЕМЕНТЫ ЯДЕРНОЙ ФИЗИКИ
- •7.1. атомное ядро
- •7.1.1. Состав атомного ядра
- •7.1.2. Энергия связи ядра
- •7.1.3. Ядерные силы
- •7.1.4. Модели ядра
- •7.2. радиоактивный распад ядер
- •7.2.1. Явление радиоактивности
- •7.2.3. Альфа-распад
- •7.3. ядерные реакции
- •7.3.1. Уравнение ядерной реакции
- •7.3.2. Законы сохранения в ядерных реакциях
- •7.3.3. Составное ядро
- •7.3.4. Типы ядерных реакций
- •7.3.5. Трансурановые элементы
- •7.4. физические основы ядерной энергетики
- •7.4.1. Деление ядер
- •7.4.2. Термоядерные реакции
- •8. ВВЕДЕНИЕ В ТЕОРИЮ ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ
- •8.1. Единицы и размерности физических величин
- •8.2.1. Погрешности прямых измерений
- •8.2.3. Учет инструментальной и случайной погрешностей
- •8.2.4. Исключение промахов
- •8.2.6. Точность измерительных приборов
- •8.2.7. О точности вычислений
- •8.2.8. Графические методы обработки результатов измерений
- •СОДЕРЖАНИЕ
- •Конспект лекций по физике

−
тоэффект используется в фотоэлементах, фотоумножителях, которые нашли широкое применение в физических приборах и различных устройствах.
5.4.6. Фотон и его свойства
Итак, наряду с волновыми свойствами как интерференция и дифракция, свет обладает и такими, для объяснения, которых пришлось предположить, что колеблющиеся заряды в атомах могут излучать и поглощать свет только определенными порциями энергии - квантами. Величина энергии кванта равна
ε = hν. (5.4.10)
В тех случаях, когда необходимо подчеркнуть корпускулярные свойства света, говорят о световых частицах – фотонах, квантами же называют порцию энергии.
Если предположить, что свет распространяется в пространстве как поток особых частиц, то следует считать, что они обладают массой и импульсом. Со-
гласно взаимосвязи массы и энергии в теории относительности E = mc2, поэтому каждому фотону можно приписать массу
m = |
ε |
= |
|
|
hν |
. |
|
|
|
|
|
|
|
(5.4.11) |
|||||||||||||
c2 |
c2 |
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
Отличие этой массы от массы макрочастиц в том, что фотон не имеет мас- |
|||||||||||||||||||||||||||
сы покоя m |
. Это следует из формулы m = m0 |
. Для фотона V = c и β = 1, |
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
1−β2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
так что |
|
|
m → ∞. Для получения конечного значения |
m |
необходимо условие: |
||||||||||||||||||||||
m0 = 0. |
Это и понятно, т.к. фотон – частица движения. Импульс фотона можно |
||||||||||||||||||||||||||
найти из соотношения E = c2 P |
2 + m2c2 . Так как m |
0 |
= 0, то |
||||||||||||||||||||||||
|
|
|
|
ε |
|
|
|
|
hν |
|
|
|
|
|
|
0 |
|
|
|
|
|
||||||
P = |
|
|
|
= |
|
|
= mc . |
|
|
|
|
(5.4.12) |
|||||||||||||||
|
|
c2 |
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
c |
|
|
|
|
|
|
|
|
|
|
с |
|
||||||||
Это выражение можно переписать с учетом того, что |
λ = |
: |
|||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
|
|
|
hν |
|
|
|
|
h |
|
|
|
hk |
|
|
|
|
|
|
|
ν |
|||||||
P = |
|
|
= |
= |
= h k , |
|
|
|
|
(5.4.13) |
|||||||||||||||||
|
|
|
2π |
|
|
|
|
||||||||||||||||||||
где |
|
|
|
c |
|
|
λ |
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
2π |
|
|
|
|
|
|
|
|
|
|
h |
|
|
|
|
|
|
|
|
|
|||||
k = |
|
|
, |
|
|
|
h = |
|
=1,05 10−34 |
Дж с |
|
|
|
|
|
|
|||||||||||
|
|
|
λ |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
2π |
|
k, |
|
|
|
|
|
|||||||
Если ввести в рассмотрении волновой вектор |
совпадающий по направ- |
||||||||||||||||||||||||||
лению с распространением света, то |
|
|
|
|
|
|
|||||||||||||||||||||
P = hk . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.4.14) |
|||||||||||
Из (5.4.13) также вытекает, что длина волны микрочастицы определяется |
|||||||||||||||||||||||||||
ее импульсом |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
λ = |
h |
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.4.15) |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
P |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|