- •Учебник по стоматологическому материаловедению
- •Оглавление
- •Глава 2. Пломбировочные материалы
- •Глава 3. Конструкционные материалы
- •Глава 4. Вспомогательные материалы
- •Глава 5. Фиксирующие материалы
- •Глава 6. Дезинфекция в клинической и лабораторной практике ортопедической стоматологии
- •Введение
- •Глава 2. Пломбировочные материалы
- •2.1.Временные пломбировочные материалы. Химический состав, показания к применению и их виды.
- •2.1.2. Цинк оксид эвгенольные пломбировочные цементы
- •2.1.3. Цинк-фосфатные пломбировочные цементы
- •2.1.4. Поликарбоксилатные пломбировочные цементы
- •2.2. Подкладочные материалы. Свойства, показания к применению. Достоинства и недостатки данных материалов
- •2.2.1. Материалы для лечебных подкладок.
- •2.2.2. Материалы для изолирующих подкладок
- •2.3. Материалы для постоянных пломб. Показания к использованию. Методики замешивания и пломбирования.
- •2.3.1. Металлосодержащие пломбировочные материалы (амальгамы)
- •2.3.2. Пластмассы
- •2.3.3. Композитные цементы
- •2.3.4. Компомеры
- •2.3.5. Керамеры
- •2.3.6. Светоотверждаемые композитные материалы
- •2.3.7. Житкотекучие композитные материалы (силанты)
- •2.4.Материалы для пломбирования корневых каналов. Требования. Классификация. Показания к применению
- •2.4.1. Пасты для временного пломбирования
- •2.4.2. Силеры
- •2.4.3. Применение гуттаперчевых штифтов для пломбирования корневых каналов
- •Глава 3. Конструкционные материалы
- •3.1. Металлы и сплавы. Требования. Химический состав. Показания к использованию. Технология применения, свойства.
- •3.1.1. Историческая справка
- •Строение и свойства металлов
- •Строение и свойства сплавов
- •3.1.4. Классификация сплавов
- •3.1.5. Физические свойства сплавов.
- •Сплавы из благородных металлов.
- •Нержавеющие стали.
- •3.1.8. Сплавы хрома и кобальта
- •3.1.9. Сплавы титана
- •3.1.10. Вспомогательные металлы и сплавы
- •Тесты Металлы и сплавы
- •3.2. Полимеры cтоматологического назначения
- •3.2.1. Классификация полимеров стоматологического назначения
- •3.2.2. Требования к базисным материалам
- •3.2.3. Основные свойства базисных полимеров
- •3.2.4. Жесткие базисные полимеры
- •3.2.5. Эластичные базисные полимеры
- •3.2.6. Термопластичные полимерные материалы
- •3.2.7. Базисные материалы на основе полиуретана
- •3.2.8. Облицовочные материалы для несъёмных конструкций протезов
- •3.2.9. Композитные материалы для изготовления несъёмных зубных протезов
- •3.2.10. Быстротвердеющие полимеры
- •3.2.11. Искусственные пластмассовые зубы
- •3.3. Керамические материалы
- •3.3.1. Общее понятие о керамике
- •3.3.2. Состав и свойства стоматологического фарфора
- •3.3.3. Характеристика компонентов фарфоровых масс
- •3.3.4. Классификации керамических масс
- •3.3.5. Ситаллы
- •3.3.6. Искусственные зубы
- •3.3.7. Керамические материалы для безметалловых протезов
- •3.3.8. Основные свойства диоксида циркония и оксида алюминия
- •Глава 4. Вспомогательные материалы
- •4.1.Оттискные материалы. Общая характеристика оттискных материалов. Классификация. Требования.
- •4.1.1. Твердые оттискные материалы. Химический состав. Показания к использованию. Технология применения. Свойства.
- •4.1.2.Эластические оттискные материалы. Классификация. Химический состав. Показания к использованию. Технология применения. Свойства.
- •4.1.3. Термопластические оттискные материалы. Химический состав. Показания к использованию. Технология применения. Свойства.
- •4.2. Моделировочные материалы.
- •4.2.1. Cтоматологические восковые моделировочные материалы их химический состав. Классификация.
- •4.2.2. Свойства восковых композиций
- •4.2.3. Воски моделировочные для несъемных протезов и вкладок.
- •4.2.4. Методы физико-механических исследований восков
- •4.3. Формовочные материалы.Требования, предъявляемые к формовочным материалам. Классификация. Химические свойства. Показания к использованию различных видов формовочных материалов.
- •Тесты. Формовочные материалы
- •4.4. Абразивные материалы
- •4.4.1. Основные свойства абразивных стоматологических материалов применяемых в ортопедической стоматологии
- •4.4.2. Классификации абразивных материалов и инструментов
- •4.4.3. Методы шлифования и полирования. Инструменты, используемые для шлифования и полирования.
- •4.4.4. Электрополирование
- •4.4.5. Алгоритм обработки зубных протезов и аппаратов
- •Глава 5. Фиксирующие материалы
- •5.1. Общая характеристика цементов
- •5.2. Цинк-фосфатные цементы
- •5.3. Цинк-эвгенольные цементы
- •5.4. Силикатные цементы
- •5.5. Силикофосфатные цементы
- •5.6. Фиксирующие материалы на основе полимеров
- •5.7. Поликарбоксилатные (цинкполиакрилатные) цементы
- •5.8.Стеклоиономерные (полиалкенатные) цементы
- •5.9. Хелатные цементы
- •Глава 6. Дезинфекция в клинической и лабораторной практике ортопедической стоматологии
- •6.1. Методы и средства дезинфекции и стерилизации в ортопедической стоматологии
- •6.2. Качественные характеристики и основные требования, предъявляемые к дезинфекционным средствам
- •6.3. Оборудование для дезинфекции и стерилизации
- •6.4. Стерилизация стоматологических инструментов
- •6.5. Дезинфекция оттисков
- •6.6. Дезинфекция и уход за съемными пластиночными протезами
- •6.7. Оценка эффективности способов дезинфекции
- •6.8. Индивидуальная защита персонала
- •6.9. Гигиенические мероприятия в зуботехнической лаборатории
- •Тесты. Дезинфекция в клинической и лабораторной практике ортопедической стоматологии
- •Терминологический словарь
3.2.9. Композитные материалы для изготовления несъёмных зубных протезов
Композиты впервые были разработаны в 40–50-х гг. ХХ в.в США и представляли собой наполненные акриловые пластмассы. Современные композитные материалы — это смесь неорганических частиц, взвешенных в связующей органической матрице.
В качестве матрицы используют мономерную систему «БИСГМА» — сокращенное название от бисфенол-А — глицидил-метакрилата. «БИСГМА», в связи с ее вязкостью, растворяется мономерами более низкой вязкости, например мономером «ТЭГДМА» (Триэтилен-гликоль-диметакрилат). В матрицу введены компоненты, обеспечивающие полимеризацию, цветовую стабильность, а также частицы наполнителя. В зависимости от размера частиц наполнителя композиты делятся на три группы: макро-, мини- и микронаполненные. Кроме наполнителей в их состав входят силаны, инициаторы полимеризаций, стабилизаторы, красители, пигменты, существенно определяющие качество композитов. В качестве неорганического наполнителя используют размельченные частицы бариевого стекла, кварца, фарфоровой муки, диоксида кремния и других веществ, существенно определяющих механическую прочность, консистенцию, рентгеноконтрастность, усадку и термическое расширение композита. Неорганические наполнители подвергаются специальной обработке поверхностно активными веществами типа диметилдихлорсилана, которые обеспечивают хорошее сцепление с органической матрицей и влияющих на прочность материала. По способу отверждения композиты подразделяются химически отверждаемые (порошок–жидкость, паста–паста) и светоотверждаемые (фотополимеры). Процесс полимеризации химически отверждаемых композитов начинается сразу после соединения компонентов, светоотверждаемые композиты не имеют ограничений по времени, что придает удобства при работе с ними. С учетом качества и дисперсности наполнителей, органической основы, адгезивных свойств, композиты делят на материалы 1, 2, 3, 4 и 5 поколений.
Композитные облицовочные материалы обладают относительно меньшей твердостью и прочностью по сравнению с ситалами и фарфором, но превосходят по этим же показателям пластмассу. Вследствие этого протезы, облицованные композитами, легче обрабатываются и полируются. Однако композиты менее долговечны в условиях полости рта, для которых характерны влажность, температурные колебания, жевательное давление и другие активные факторы. Недостатком композиционных материалов является и полимеризационная усадка.
В ортопедии и ортодонтии композиты используют как материал для фиксации брекетов при применении несъемной ортодонтической аппаратуры, фиксации несъемных протезов, восстановления твердых тканей зубов перед препарированием, фиксации шин, для изготовления металлокомпозитных мостовидных протезов.
Соединение композита с металлом довольно сложная физико-химическая реакция. Для соединения композитного материала с поверхностью каркаса зубного протеза необходима диффузия облицовочного материала в поверхность сплава с образованием пограничного слоя. В этих целях используют механические или химические средства. Чтобы обеспечить прочноеприсоединение композита к каркасу протеза или к твердым тканям зуба применяют механический, физико-механический и комбинированный методы, а также специальные технологии и различные адгезивные системы. В основе соединения композита и металла должна лежать химическая или микромеханическая природа.
Прочное соединение композита с металлом каркаса протеза происходит после нанесения на поверхность металла ретенционных шариков (микроперлов) диаметром 100–200 мкм.
Более широкое применение композитов обусловило развитие техники бондинга и улучшение физических и механических характеристик этих материалов. Вследствие относительно высокой прочности композиты могут использоваться в качестве конструкционных материалов для изготовления небольших мостовидных протезов, не содержащих металлических каркасов; жакетных коронок; вкладок; накладок; виниров и др. Отличительная особенность таких протезов — эстетичность, показатели светопреломления, соответствующие аналогичным показателям естественных зубов. Недостаточная прочность таких протезов может быть компенсирована введением в конструкцию протеза стекловолокна в виде нитей, лент, шнуров. В последние 10–20 лет в стоматологических клиниках наибольшую популярность получили светоотверждаемые композиционные материалы для изготовления несъемных и съемных конструкций зубных протезов. В то же время продолжается поиск и разработка новых композитных материалов, свойства которых постоянно улучшаются, что делает композиты альтернативными фарфору и ситалу.
Значительная полимеризационная усадка, повышенная стираемость, неполная полимеризация облицовочных композитов стимулировали разработку композитных материалов второго поколения – керамеров. Улучшение физических характеристик связано с высокой концентрацией наполнителя и использованием мономеров с большим количеством реакционных участков.
Керамеры — композитные материалы, которые являются промежуточной формой между керамикой и композитным материалом и применяются в качестве безметалловых конструкционных материалов для изготовления вкладок, коронок, мостовидных протезов. Такие конструкции практически неотличимы от фактуры живого зуба. Их гладкость позволяет повысить сопротивляемость образованию зубного налёта, а эластичность — предотвратить сколы. Керамеры — прочны, прозрачны, биосовместимы, пространственно стабильны, долговечны. Эти материалы, в частности, широко используются для восстановления сильно разрушенных зубов с применением вкладок. Все конструкции протезов из керамеров изготовливаются лабораторным путем.
