- •1. Классификация нефтей по физическим свойствам.
- •2. Химическая классификация нефтей.
- •3. Техническая классификация нефтей.
- •4. Технологическая классификация нефтей.
- •5. Стабилизация нефти. Установки стабилизации нефти на промыслах.
- •6. Подготовка нефти к переработке. Вредные примеси в нефтях.
- •7. Теоретические основы разделения нефтяных эмульсий.
- •8. Технология обезвоживания и обессоливания нефти.
- •9. Типы и режимы работы электродегидраторов.
- •10. Классификация установок первичной перегонки нефти.
- •11. Особенности нефти как сырья процессов перегонки.
- •12. Особенности ректификации нефти: четкость погоноразделения, флегмовое число, паровое число.
- •13. Высококипящие и остаточные фракции нефти.
- •14. Первичная перегонка нефти, технологическая схема. [см. Вопрос 10]
- •1 5. Термодеструктивные процессы, их классификация.
- •16. Химические реакции, протекающие при термокрекинге и пиролизе.
- •17. Термический крекинг. Крекинг мягкого и твердого парафина (понятие мягкий и твердый парафин).
- •18. Висбрекинг.
- •1 9. Технологическая схема установки висбрекинга.
- •20. Коксование.
- •21. Пиролиз. [см. Вопрос 15]
- •22. Технологическая схема установки пиролиза.
- •23. Процессы получения битума.
- •24. Технический углерод (сажа).
- •25. Термокаталитические процессы. Процесс изомеризации. Химические реакции изомеризации.
- •2 6. Технологическая схема установки изомеризации.
- •27. Гидроочистка топлив.
- •28. Химические реакции типичные для процесса гидроочистки.
- •2 9. Технологическая схема установки гидроочистки топлива.
- •VIII – бензин; IX – дизельное топливо; X – вода.
- •30. Каталитический риформинг. Основные реакции. [см. Вопрос 15]
- •31. Схема установки риформинга со стационарным слоем катализатора.
- •32. Каталитический крекинг.
- •33. Особенности оформления технологического процесса риформинга.
- •3 4. Схема реакторно-регенераторного блока установки риформинга.
- •Принципиальные схемы установок первичной перегонки нефти по топливному варианту неглубокой переработки ат (а), топливному варианту глубокой переработки авт (б) и
- •VIII – широкая масляная фракция; IX – гудрон;
- •3 6. Варианты подачи орошения в сложную ректификационную колонну. [см. Вопрос 10]
- •3 7. Принципиальная установка ат, ее описание.
- •38. Знать, что такое процесс ректификации!!!!
- •39. Температурные пределы выкипания светлых дистиллятов первичной перегонки нефти.
- •40. Знать числовое значение атомов «с» в ув, составляющих светлые дистилляты первичной перегонки нефти.
5. Стабилизация нефти. Установки стабилизации нефти на промыслах.
Стабилизация нефти:
Нефть, выходящая из промысловых скважин, несет с собой попутный газ, песок, ил, кристаллы солей и воду в виде насыщенного раствора хлоридов. Попутные и растворенные в нефти газы отделяются на промысле в системе трапов-газосепараторов за счет последовательного снижения давления – от давления в скважине до атмосферного. Газ, выходящий из сепараторов сверху, частично освобождается от увлеченного конденсата в промежуточных приемниках и направляется на газобензиновые заводы или закачивается в скважины для поддержания в них пластового давления. После трапов-газосепараторов в нефти остаются еще растворенные газы, содержание которых иногда достигает 4 % (масс.).
В трапах-газосепараторах одновременно с отделением газа происходит и отстой сырой нефти от механических примесей и основной массы промысловой воды, поэтому эти аппараты на промыслах часто служат отстойниками. Нефть из трапов-газосепараторов направляется в отстойные резервуары емкостью до 30-50 тыс. м3, из которых она поступает на промысловые электрообессоливающие установки (ЭЛОУ).
Установка стабилизации нефти на промысле:
Процесс физической стабилизации нефти предназначен для удаления газовых компонентов. Вследствие высокого давления насыщенных паров газы выделяются из нефти при температуре окружающей среды, унося с собой ценные легкие (пусковые) компоненты бензиновых фракций.
Ниже приведены температуры и соответствующие им давления насыщенных паров для легких углеводородов:
-
Температура, °С
0
10
20
30
40
50
Давление, МПа:
Этан
2,31
2,92
3,65
4,50
—
—
Пропан
0,46
0,62
0,82
1,06
1,34
1,66
н-бутан
0,10
0,14
0,20
0,27
0,37
0,48
Такое испарение наблюдается в резервуарах, при сливе и наливе нефтей и нефтепродуктов. При этом потери могут достигать 5 % (масс.). Присутствие в нефти газов, кроме того, способствует образованию в трубопроводах паровых пробок, которые затрудняют перекачивание.
Установки стабилизации нефти строятся и эксплуатируются на промыслах. Для стабилизации только нефти применяют одноколонные установки, а двухколонные установки используют для стабилизации нефти в одной колонне и стабилизации газового бензина – в другой. Последние используют для нефтей с высоким содержанием растворенных газов – более 1,5 % (масс.). Технологическая схема двухколонной установки стабилизации нефти приведена на рис.
Рис. Технологическая схема установки стабилизации нефтей:
1 – трубчатая печь;
2, 13 – колонны;
3, 4, 5, 11, 20 – насосы;
6, 17 – теплообменники;
7 – подогреватель;
8, 14 – холодильники-конденсаторы;
9 – газоводоотделитель;
10, 16 – редукционные клапаны;
12 – кипятильник;
15 – газосепаратор;
18 – холодильник;
19 – аппарат воздушного охлаждения.
I – сырая нефть;
II – сухой газ;
III – сжиженный газ;
IV – стабильный бензин;
V – стабильная нефть;
VI – вода;
VII – водяной пар.
Сырая нефть из резервуаров промысловых ЭЛОУ забирается сырьевым насосом 5, прокачивается через теплообменник 6, паровой подогреватель 7 и при температуре около 60 °С подается под верхнюю тарелку первой стабилизационной колонны 2. Эта колонна оборудована тарелками желобчатого типа (число тарелок может быть от 16 до 26), верхняя из которых является отбойной, три нижних – смесительными. Избыточное давление в колонне от 0,2 до 0,4 МПа, что создает лучшие условия для конденсации паров бензина водой в водяном холодильнике-конденсаторе 8. Нефть, переливаясь с тарелки на тарелку, встречает более нагретые поднимающиеся пары и освобождается от легких фракций. Температура низа колонны поддерживается в пределах 130-150 °С за счет тепла стабильной нефти, циркулирующей через змеевики трубчатой печи 1 с помощью насоса 3. Стабильная нефть, уходящая с низа колонны, насосом 4 прокачивается через теплообменники 6, где отдает свое тепло сырой нефти. Далее нефть проходит аппарат воздушного охлаждения 19 и поступает в резервуары стабильной нефти, откуда она и транспортируется на нефтеперерабатывающие заводы.
Смесь газов и паров, выходящая с верха колонны 2, охлаждается в холодильнике-конденсаторе 8. Газы вместе с образовавшимся конденсатом поступают в газоводоотделитель 9. Несконденсированные газы – сухой газ (в основном метан и этан) с верха газоводоотделителя выводятся с установки. На газоотводном трубопроводе ставится редукционный клапан 10, поддерживающий стабильное давление в аппарате 9 и колонне 2.
Газоводоотделитель разделен вертикальной перегородкой. Из одной половины аппарата снизу с помощью регулятора уровня, который соединен с клапаном на дренажной линии, выводится вода. Из другой половины конденсат – смесь углеводородов – забирается насосом 11 и прокачивается через теплообменник 17 стабильного бензина. Здесь смесь нагревается примерно до 70 °С и с такой температурой поступает в испарительную часть стабилизационной колонны 13. Колонна имеет 30-32 желобчатые тарелки; давление в колонне поддерживается в пределах 1,2-1,5 МПа.
С верха колонны 13 уходит газ; тяжелая часть газа (пропан, бутаны) конденсируется в водяном холодильнике-конденсаторе 14 и отделяется в газосепараторе 15 от несконденсировавшейся части. Этот несконденсировавшийся газ выходит из газосепаратора сверху, проходит редукционный клапан 16 и объединяется с газом, выходящим из газоводоотделителя 9. С помощью клапана 16 давление в колонне 13 поддерживается в пределах 1,2-1,5 МПа. Сжиженный газ, отводимый с низа газосепаратора 15, направляется насосом 20 в приемник (на схеме не показан). Часть газа возвращается на верхнюю тарелку колонны 13 в виде холодного орошения, с помощью которого температура верха колонны поддерживается в пределах 40-50 °С. Для достаточно полного выделения растворенных газов температура низа колонны должна быть выше 120-130 °С. Такая температура обеспечивается рециркуляцией стабильного бензина через кипятильник 12 с паровым пространством. В кипятильнике бензин нагревается до 160-180 °С водяным паром (давлением 0,3-0,5 МПа). Пары, образующиеся в кипятильнике, поступают в колонну 13, а жидкость – стабильный бензин – перетекает через перегородку внутри аппарата 12 и под давлением системы проходит теплообменник 17, холодильник 18 и далее направляется в резервуар стабильного бензина (на схеме не показан).
В результате стабилизации легкой нефти из нее полностью удаляются метан, этан и на 95 % пропан, при этом давление насыщенных паров нефти при 40 °С снижается с 0,85 до 0,03 МПа, что гарантирует постоянство фракционного состава нефти при ее транспортировании и хранении.
Стабильный бензин IV после охлаждения направляется в отдельную емкость либо смешивается со стабильной нефтью V и направляется на НПЗ. Содержание легких фракций в нефти до и после стабилизации приводится ниже [% (об.)]:
-
C1
C2
C3
C4
C5
C6
C7+
До стабилизации
0,6
2,3
2,7
2,3
3,6
7,0
81,5
После стабилизации
—
—
Следы
2,0
4,2
7,4
86,4
В результате стабилизации нефти получают широкую фракцию легких углеводородов (ШФЛУ) от метана до гептана и выше. Состав этой фракции определяется качеством стабилизируемой нефти и методами стабилизации.
