- •1. Титриметрический метод анализа. Сущность метода. Классификация титриметрических методов анализа.
- •2. Международная система единиц (си). Основные физические величины и формулы для расчёта, применяемые в количественном анализе.
- •3. Способы титрования. Расчёты в титриметрическом методе по результатам титрования.
- •5 . Буферные растворы. Расчет рН буферных растворов.
- •6. Понятие гидролиза. Расчёт рН гидролизующихся солей.
- •Расчёт рН гидролизующихся солей (?):
- •7. Сущность метода кислотно-основного титрования. Рабочие растворы. Приготовление и стандартизация рабочих растворов.
- •3. Титрование слабого основания сильной кислотой
- •Выводы по кривым нейтрализации
- •9. Индикаторы (понятие). Требования, предъявляемые к индикаторам. Кислотно-основные индикаторы.
- •10. Интервал перехода окраски кислотно-основных индикаторов. Выбор индикатора.
- •11. Сущность методов комплексообразовательного титрования. Комплексонометрия.
- •12. Понятие о комплексонах. Механизм взаимодействия комплексона с ионами металлов.
- •14. Механизм действия металлохромных индикаторов (на примере эриохромчёрного т).
- •15. Расчёт кривых комплексонометрического титрования. Выбор индикатора.
- •16. Способы титрования, применяемые в комплексонометрии.
- •17. Повышение селективности комплексонометрических определений. (из тетради)
- •18. Оксидиметрия. Сущность метода. Окислительно-восстановительные потенциалы и направление реакции.
- •19. Индикаторы, применяемые в окислительно-восстановительном титровании. Выбор индикатора. (тетрадь)
- •20. Расчёт кривых окислительно-восстановительного титрования.
- •21. Перманганатометрия. Сущность метода. Рабочие растворы. (смотри тетрадь и лабу 3)
- •22. Перманганатометрическое определение восстановителей и окислителей.
- •23. Перманганатометрическое определение веществ, не обладающих окислительно-восстановительными свойствами.
- •24. Перманганатометрическое определение органических соединений.
- •25. Йодометрия. Сущность метода. Рабочие растворы. Способы фиксирования точки эквивалентности.
- •26. Йодометрическое определение окислителей и восстановителей. (см. Лабу 4)
- •Определение восстановителей
- •27. Йодометрическое определение веществ, не проявляющих окислительно-восстановительных свойств.
- •28. Йодометрическое определение органических веществ.
- •29. Особенности и области применения инструментальных методов анализа.
- •30. Сущность потенциометрических методов анализа.
- •31. Электроды сравнения. Устройство и уравнение потенциала для хлоридсеребряного электрода. (лаба 5)
- •32. Металлические индикаторные электроды.
- •33. Электроды с жесткой матрицей, с кристаллической мембраной.
- •34. Прямая потенциометрия. Общая характеристика метода. Приемы, используемые в прямой потенциометрии для определения концентрации вещества. (лаба 5)
- •35. Определение точки эквивалентности в потенциометрическом титровании.
- •36. Сущность кулонометрии; вывод уравнения для объединенного закона Фарадея, условия проведения прямой и косвенной кулонометрии.
- •37. Достоинства кулонометрического титрования перед другими титриметрическими методами.
- •39. Прямая потенциостатическая кулонометрия (применение, схема установки, теоретические основы).
- •40. Косвенная амперостатическая кулонометрия. Схема установки. Сущность метода.
- •Для тех, кто на «отлично»:
- •41. Спектроскопические методы анализа. Электромагнитное излучение и его взаимодействие с веществом.
- •42. Спектроскопические методы анализа. Электромагнитный спектр.
- •44. Молекулярно-абсорбционная спектроскопия. Основные узлы приборов для молекулярно-абсорбционных методов анализа.
- •45. Явление фотоэффекта. Основные законы Столетова.
- •48. Атомно-абсорбционная спектроскопия. Основные положения метода.
- •49. Схема атомно-абсорбционного спектрофотометра. Основные узлы.
- •50. Атомно-эмиссионная спектроскопия (пламенная эмиссионная спектроскопия). Основные положения метода.
30. Сущность потенциометрических методов анализа.
См. лабу 5 + сдо: https://clck.ru/33FjeU https://clck.ru/33Fjeu https://clck.ru/33FjfV
31. Электроды сравнения. Устройство и уравнение потенциала для хлоридсеребряного электрода. (лаба 5)
Электроды сравнения предназначены для измерения электродных потенциалов. Необходимость их использования обусловлена невозможностью измерения абсолютной величины потенциала отдельного электрода. В качестве электрода сравнения м. б. использован электрод, обладающий постоянным и не зависящим от состава раствора потенциалом. При этом необязательно знать числовую величину потенциала. Значение потенциала должно воспроизводиться и не изменяться от опыта к опыту. Существенными требованиями к электродам сравнения являются низкое электрическое сопротивление, отсутствие влияния на состав анализируемого раствора, способность не вызывать появления значительного диффузионного потенциала и, несомненно, простота конструкции.
В качестве электрода сравнения в потенциометрии часто используют каломельный электрод с насыщенным р-ром хлорида калия, хлорсеребряный электрод.
Хлорсеребряный электрод (ХСЭ) состоит из серебряной проволоки с наплавленным слоем хлорида серебра, погруженной в насыщенный раствор хлорида калия - Ag|AgClтв|КClнас.|Cl-. Потенциал такого электрода определяется равновесной системой Ag++ Cl- ↔ AgClтв + e и рассчитывается по уравнению
Следовательно, потенциал хлорсеребряного электрода (Е) при избыточной концентрации [Cl-] (KClнас) при 25 0С равен Е0 (+ 0,222 В).
32. Металлические индикаторные электроды.
Металлические индикаторные электроды подразделяют на электроды первого и второго рода. Электроды 1-го рода представляют собой металлическую пластинку или проволоку, погруженнyю в раствор хорошо растворимой соли этого металла, например, серебряную проволоку, опущенную в раствор нитрата серебра; медную пластинку, погруженную в раствор сульфата меди.
Потенциал электрода 1-го рода зависит от концентрации компонента, непосредственно участвующего в электродной реакции переноса электронов:
Ag+ + e → Ag0 ; Сu2+ + 2e → Cu0
Металлические индикаторные электроды можно изготовить из различных металлов, способных к обратимому гетерогенному окислению, например, из серебра, меди, ртути, свинца и кадмия. Потенциалы этих металлов воспроизводимы и предсказуемо отражают активность их ионов в растворе.
Такие металлы как железо, никель, вольфрам, кобальт и др. не пригoдны для изготовления индикаторных электродов, поскольку для них характерно невоспроизводимость значений потенциала, связанная с образованием оксидных слоев на поверхности электрода, с кристаллической деформацией в их структурах и т.д.
Электроды 2-го рода состоят из металла, покрытого слоем его малорастворимого соединения (соли, оксида или гидроксида) и погруженного в раствор, содержащий тот же анион, что и в труднорастворимом соединении: Аz- | МА, Мo Электродную реакцию и равновесный потенциал в такой системе можно записать следующим образом: МА + zе = М0+ Аz-.
С помощью электродов второго рода измеряют концентрацию ионов, не участвующих непосредственно в процессе переноса электрона.
Например, потенциал серебряного электрода будет правильно отражать концентрацию хлорид-ионов в растворе, насыщенном хлоридом серебра. Эти электроды широко используются и как электроды сравнения, по отношению к которым измеряют потенциалы других электродов.