Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вероятность 7.doc
Скачиваний:
190
Добавлен:
17.03.2015
Размер:
838.66 Кб
Скачать

5.3. Начальные и центральные моменты

Начальным моментом k-го порядка случайной величины X называется математическое ожидание величины Xk:

. (5.10)

В частности,

Центральным моментом k-го порядка случайной величины X называется математическое ожидание величины [X–M(X)]k:

. (5.11)

В частности,

Воспользовавшись определениями и свойствами математического ожидания и дисперсии, можно получить, что

,

,

.

Моменты более высоких порядков применяются редко.

Предположим, что распределение случайной величины симметрично относительно математического ожидания. Тогда все центральные нечетного порядка равны нулю. Это можно объяснить тем, что для каждого положительного значения отклонения X–M[X] найдется (в силу симметричности распределения) равное ему по абсолютной величине отрицательное значение, причем их вероятности будут одинаковыми. Если центральный момент равен нечетного порядка не равен нулю, то это говорит об асимметричности распределения и чем больше момент, тем больше асимметрия. Поэтому в качестве характеристики асимметрии распределения разумнее всего взять какой-нибудь нечетный центральный момент. Так как центральный момент 1-го порядка всегда равен нулю, то целесообразно для этой цели использовать центральный момент 3-го порядка. Однако принять этот момент для оценки асимметричности неудобно потому, что его величина зависит от единиц, в которых измеряется случайная величина. Чтобы устранить этот недостаток, 3 делят на 3 и таким образом получают характеристику.

Коэффициентом асимметрии A называется величина

. (5.12)

Рис. 5.1

Если коэффициент асимметрии отрицателен, то это говорит о большом влиянии на величину3 отрицательных отклонений. В этом случае кривые распределения более пологи слева от M[X]. Если коэффициент A положителен, то кривая более пологи справа.

Как известно, дисперсия (2-й центральный момент) служит для характеристики рассеивания значений случайной величины вокруг математического ожидания. Чем больше дисперсия, тем более полога соответствующая кривая распределения. Однако нормированный момент 2-го порядка 2/2 не может служить характеристикой "плосковершинности" или "островершинности" распределения потому, что для любого распределения D[x]/2=1. В этом случае используют центральный момент 4-го порядка.

Эксцессом E называется величина

. (5.13)

Ч

Рис. 5.2

исло 3 здесь выбрано потому, что для наиболее распространенного нормального закона распределения4/4=3. Поэтому эксцесс служит для сравнения имеющихся распределе­ний с нормальным, у которого экс­цесс равен нулю. Это означает, что если у распределения эксцесс положителен, то соответствующая кривая распределения более "островершина" по сравнению с кривой нормального распределения; если у распределения эксцесс отрица­телен, то соответствующая кривая более "плосковершина".

Пример 5.6. ДСВ X задана следующим законом распределения:

X

1

3

5

7

9

P

0,1

0,4

0,2

0,2

0,1

Найти коэффициент асимметрии и эксцесс.

Рис. 5.4

Решение. Предварительно найдем начальные моменты до 4-го порядка

Теперь вычислим центральные моменты:

Таким образом,

Пример 5.7. НСВ X задана следующей плотностью распределения:

Найти коэффициент асимметрии и эксцесс.

Рис. 5.5

Решение. Предварительно найдем начальные моменты до 4-го порядка

Теперь вычислим центральные моменты:

.

Таким образом,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]