
- •Теоретические основы электротехники
- •Т1. Введение
- •1.Общие сведения о дисциплине
- •Выписка из учебного плана специальности
- •2. Методическое обеспечение.
- •Рабочие программы курса тоэ
- •Содержание лекций
- •Содержание и варианты заданий расчетно-графических работ
- •Часть 1. Линейные электрические цепи т.1. Физические законы в электротехнике
- •1.Электромагнитное поле
- •2. Электрический ток. 1-й закон Кирхгофа
- •3. Электрическое напряжение . 2-ой закон Кирхгофа
- •4.Энергетический баланс в электрической цепи
- •5. Физические процессы в электрической цепи
- •Т.2. Теоремы и методы расчета сложных резистивных цепей
- •1. Основные определения
- •2. Метод преобразования (свертки) схемы
- •3. Метод законов Кирхгофа
- •4. Метод контурных токов
- •5. Метод узловых потенциалов
- •6. Метод двух узлов
- •7. Принцип наложения. Метод наложения
- •8. Теорема о взаимности
- •9. Теорема о компенсации
- •10. Теорема о линейных отношениях
- •11. Теорема об эквивалентном генераторе
- •Т. 3. Электрические цепи переменного синусоидального тока
- •1. Переменный ток (напряжение) и характеризующие его величины
- •2. Среднее и действующее значения переменного тока и напряжения
- •3. Векторные диаграммы переменных токов и напряжений
- •4. Теоретические основы комплексного метода расчета цепей переменного тока
- •5. Мощность переменного тока
- •6. Переменные ток в однородных идеальных элементах
- •7. Электрическая цепь с последовательным соединением элементов r, l и c
- •8. Электрическая цепь с параллельным соединением элементов r, l и с
- •9. Активные и реактивные составляющие токов и напряжений
- •10. Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику)
- •11. Компенсация реактивной мощности приемников энергии
- •Т.4. Резонанс в электрических цепях
- •1. Определение резонанса
- •2. Резонанс напряжений
- •3. Резонанс токов
- •4. Резонанс в сложных схемах
- •Т.5. Магнитносвязанные электрические цепи
- •1.Общие определения
- •2. Последовательное соединение магнитносвязанных катушек
- •3. Сложная цепь с магнитносвязанными катушками
- •4. Линейный (без сердечника) трансформатор
- •Т.6. Исследование режимов электрических цепей методом круговых диаграмм.
- •Уравнение дуги окружности в комплексной форме.
- •2. Круговая диаграмма тока и напряжений для элементов последовательной цепи
- •Круговая диаграмма для произвольного тока и напряжения в сложной цепи
- •Т.6. Топологические методы расчета электрических цепей
- •1.Топологические определения схемы
- •Уравнения Ома и Кирхгофа в матричной форме
- •3. Контурные уравнения в матричной форме
- •4. Узловые уравнения в матричной форме
- •Т.7. Электрические цепи трехфазного тока.
- •1. Трехфазная система
- •2. Способы соединения обмоток трехфазных генераторов
- •5. Способы соединения фаз трехфазных приемников.
- •7. Мощность трехфазной цепи и способы ее измерения
- •8.Вращающееся магнитное поле
- •9.Теоретические основы метода симметричных составляющих
- •Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении
- •Разложим несимметричную систему напряжений ua, ub, uc на симметричные составляющие прямой, обратной и нулевой последовательностей:
- •10. Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих.
- •Фильтры симметричных составляющих
2. Способы соединения обмоток трехфазных генераторов
В обмотках трехфазного генератора индуктируются синусоидальные ЭДС, сдвинутые по фазе на 1200:
,
,
,
Между собой фазные
обмотки генератора могут соединяться
по двум различным схемам: звездой
()
и треугольником (
).
При соединении в звезду концы фазных обмоток (фаз) генератора соединяются в общую точку N, которая называется нулевой или нейтральной, а начала обмоток служат линейными выводами генератораА,В,С(рис. 88).
Векторная диаграмма напряжений трехфазного генератора при соединении его фазных обмоток в звезду показана на рис. 89а, б.
В трехфазном генераторе различают фазные и линейные напряжения. Фазными называются напряжения между началами и концами фазных обмоток или между одним из линейных выводов А, В, Си нулевым выводомN. Фазные напряжения равны фазным ЭДС:UА=ЕА, UВ=ЕВ, UС=ЕС (индексNпри фазных напряжениях опускается, так какφN = 0). Линейными называются напряжения между двумя линейными выводамиА, В, С. Линейные напряжения равны векторной разности двух фазных напряжений:UАВ =UА UВ; UВС =UВ UС;UСА =UС UА .
При расчете
трехфазных цепей комплексным методом
фазные и линейные напряжения
генератора представляются в комплексной
форме, при этом один из векторов системы
принимают за начальный и совмещают его
с вещественной осью, а остальные
вектора получают начальные фазы
согласно их углам сдвига по отношению
к начальному вектору. На рис. 89а показан
вариант представления напряжений
трехфазного генератора в комплексной
форме, когда за начальный вектор
принимается фазное напряжение фазы А.
В этом случае фазные напряжения
генератора в комплексной форме получат
вид :,
,
,
линейные напряжения:
,
,
.
На рис. 89б показан
другой вариант представления напряжений
трехфазного генератора в комплексной
форме, когда за начальный вектор
принимается линейное напряжение UAB.
В этом случае фазные напряжения
генератора в комплексной форме
получат вид:,
,
,
линейные напряжения:
,
,
.
Из геометрии рис.
5 получаем соотношение между модулями
линейного и фазного напряжений: UЛ
= 2UФcos 300=2UФ=
UФ.
Обмотки трехфазного генератора теоретически можно включать по схеме треугольника. В такой схеме конец каждой предыдущей фазы соединяется с началом последующей, а точки соединения служат линейными выводами генератора (рис. 90).
При соединении
фаз в треугольник в его контуре действует
сумма фазных ЭДС:
= еАВ + еВС +
еСА. В реальных трехфазных
генераторах технически невозможно
обеспечить равенство нулю для
суммарной ЭДС. Так как собственные
сопротивления обмоток генератора
малы, то даже незначительная по величине
суммарная ЭДС
0
может вызвать в контуре треугольника
уравнительный ток, соизмеримый с
номинальным током генератора, что
привело бы к дополнительным потерям
энергии и снижению КПД генератора. По
этой причине обмотки трехфазных
генераторов запрещается соединять по
схеме треугольника.
Номинальным напряжением в трехфазной системе называется линейное напряжение. Номинальное напряжение принято выражать в киловольтах (кВ). Шкала номинальных трехфазных напряжений, применяемых на практике, имеет вид: 0,4; 1,1; 3,5; 6,3; 10,5; 22; 35; 63; 110; 220; 330; 500; 750. На потребительском уровне номинальное трехфазное напряжение может указываться в виде отношения UЛ ⁄ UФ, например:UЛ ⁄ UФ = 380 ⁄ 220 В.