Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
среда презентация 1.docx
Скачиваний:
55
Добавлен:
12.03.2015
Размер:
236.58 Кб
Скачать

1

Министерство образования и науки Российской Федерации

Федеральная служба по надзору в сфере образования и науки

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Казанский национальный исследовательский технологический университет»

(ФГБОУ ВПО КНИТУ)

Кафедра АХСМК

Презентация

по дисциплине: Процессы получения наночастиц и наноматериалов

на тему: «Получение наноматериалов с использованием твердофазных превращений»

Выполнил:

Студент гр. 4301-11

Мухамитова А.А.

Казань, 2014

Содержание

ВВЕДЕНИЕ

3

1.

МЕТОДЫ ПОЛУЧЕНИЯ АМОРФНЫХ МЕТАЛЛОВ

7

1.1.

МЕТОД ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ АМОРФНЫХ ПЛЁНОК ИЗ РАСТВОРОВ ЭЛЕКТРОЛИТОВ

9

1.2.

АМОРФИЗАЦИЯ КРИСТАЛЛИЧЕСКОГО СОСТОЯНИЯ ПУТЁМ ВВЕДЕНИЯ В КРИСТАЛЛЫ БОЛЬШОГО КОЛИЧЕСТВА ДЕФЕКТОВ

10

1.3.

ИНТЕНСИВНАЯ ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ

12

1.4.

ЗАКАЛКА ЖИДКОГО СОСТОЯНИЯ

14

2.

ДОСТОИНСТВА И НЕДОСТАТКИ МЕТОДА ПОЛУЧЕНИЯ НАНОМАТЕРИАЛОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНЫХ ПРЕВРАЩЕНИЙ

19

ЗАКЛЮЧЕНИЕ

20

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

21

Введение

В последнее время разработан ряд методов получения наноматериалов, в которых диспергирование осуществляется в твердом веществе без изменения агрегатного состояния.

Контролируемая кристаллизация из аморфного состояния является одним из способов получения массивных наноматериалов. Метод заключается в получении аморфного материала, например, закалкой из жидкого состояния, а затем его кристаллизацией в условиях контролируемого нагрева.

Аморфными называют металлы, находящиеся в твёрдом состоянии, у которых в расположении атомов отсутствует дальний порядок, характерный для металлов в обычном, т.е. кристаллическом, состоянии. Для характеристики металлов в таком состоянии используются также термины «металлическое стекло», реже – «некристаллические металлы». Аморфное состояние является предельным случаем термодинамической нестабильности твёрдых металлических систем, противоположным термодинамическому состоянию бездефектного кристалла.

На протяжении тысячелетий человечество использовало твёрдые металлы исключительно в кристаллическом состоянии. Лишь в конце 30-х годов ХХ века появились попытки получения методом вакуумного напыления некристаллических металлических покрытий в виде тончайших плёнок. В 1950 году была получена аморфная плёнка сплава Ni–P методом электроосаждения из растворов. Такие плёнки использовали в качестве твёрдых, износостойких и коррозионностойких покрытий.

Положение существенно изменилось, когда в 1960 году был открыт способ получения аморфных металлических сплавов путём закалки жидкого состояния, а в 1968 году – способ закалки расплава на поверхности вращающегося диска с получением аморфной ленты большой (сотни метров) протяженности. Это открыло возможность крупномасштабного производства аморфных металлов при их относительно низкой стоимости и обусловило взрывоподобный рост исследований в области аморфных сплавов.

Сегодня порядка 80% промышленных аморфных сплавов производятся ради их уникальных магнитных свойств. Они применяются в качестве магнитомягких материалов, сочетающих изотропность свойств, высокую магнитную проницаемость, высокую индукцию насыщения, малую коэрцитивную силу. Их применяют для изготовления магнитных экранов, магнитных фильтров и сепараторов, датчиков, записывающих головок и т.п. Сердечники трансформаторов, изготовленные из аморфных сплавов, характеризуются весьма малыми потерями на перемагничивание благодаря узкой петле гистерезиса, а также высокому электросопротивлению и малой толщине аморфной ленты, что уменьшает потери, связанные с вихревыми токами.

В последнее время, примерно с середины 90-х годов ХХ века, существенно возрос интерес к структурным элементам различных материалов, в том числе металлов, имеющим наноразмерный масштаб (1…100 нм). При таких размерах структурных образований, в частности кристаллов, существенно возрастает доля поверхностных частиц, обладающих отличным от расположенных внутри объёмов частиц взаимодействием. В результате свойства материалов, образованных такими частицами, могут значительно отличаться от свойств материалов такого же состава, но имеющих более крупные размеры структурных единиц. Для характеристики таких материалов и способов их производства появились и широко употребляются специальные термины наноматериалы, нанотехнологии, наноиндустрия.

В современном понимании наноматериалы – это разновидность продукции в виде материалов, содержащих структурные элементы нанометровых размеров, наличие которых обеспечивает существенное улучшение или появление качественно новых механических, химических, физических, биологических и других свойств, определяемых проявлением наномасштабных факторов. А нанотехнологии – это совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных (1…100 нм) элементов для получения объектов с новыми химическими, физическими, биологическими свойствами. Соответственно наноиндустрия – это производство наноматериалов, реализующее нанотехнологии. Применительно к металлам термином «нанокристаллические» принято называть металлы, размеры кристаллов которых укладываются в приведённый выше нанометровый диапазон.

Разработка наноматериалов, нанотехнологий и использование объектов с управляемыми наноразмерными структурами стали возможными в значительной степени благодаря появлению исследовательских приборов и прямых методов исследования объектов атомного уровня. Например, современные просвечивающие электронные микроскопы с увеличением порядка 1,5х106 позволяют визуально наблюдать атомную структуру.

Существуют разные способы получения наноструктурированных материалов, в том числе металлов. Например, наноструктуру можно получить в объёмной металлической заготовке путём измельчения обычных кристаллов до наноразмерных. Этого можно достичь, в частности, путём интенсивной пластической деформации. Однако методы измельчения структуры путём деформации не позволяют получать нанокристаллические металлы в промышленных масштабах и не относятся к традиционным металлургическим технологиям.

В то же время нанокрсталлическую, как и аморфную, структуру металла можно получить и традиционными металлургическими способами, в частности быстрым охлаждением расплава. В зависимости от условий закалки жидкого состояния возможны три варианта формирования структуры:

  • нанокристаллизация непосредственно в процессе закалки расплава (предельный случай обычной ускоренной кристаллизации, приводящий к получению не просто мелкозернистой, а наноструктуры);

  • в процессе закалки расплава происходит частичная кристаллизация, так что образуется композитная аморфно-кристаллическая структура;

  • при закалке формируется аморфная структура, а нанокристаллическая структура образуется при последующем отжиге.

Нанокристаллические, как и аморфные, металлы, получаемые методом закалки жидкого состояния, находят применение также преимущественно в качестве магнитных и электротехнических материалов с уникальными свойствами. Они используются в качестве магнитомягких и магнитотвёрдых материалов, проводников, полупроводников, диэлектриков и т.д.

В частности, широкое применение нашли магнитомягкие сплавы типа файнмет (Finemet). Это нанокристаллические сплавы системы Fe–Si–B с добавками Cu и Nb или других тугоплавких металлов. Сплавы получают путём частичной кристаллизации аморфного состояния. Их структура состоит из ферромагнитных кристаллитов размером 10…30 нм, распределённых в аморфной матрице, которая составляет от 20 до 40% объёма. Сплавы типа файнмет обладают очень низкой коэрцитивной силой, высокой магнитной проницаемостью и намагниченностью, малыми потерями на перемагничивание, превосходя по своим характеристикам другие магнитомягкие сплавы, в том числе и аморфные.

Достаточно широко применяются также магнитотвёрдые нанокристаллические сплавы систем Fe–Nd–B, Fe–Sm–N. Поскольку многие магнитные материалы (Fe–Si, Fe–Nd–B) хрупки, то уменьшение величины зерна не только улучшает их магнитные характеристики, но и повышает пластичность.