- •Теория вероятностей
- •Содержание
- •Раздел 6. Законы распределения функций случайных аргументов. 90
- •1. Теоретическая часть. Введение
- •Раздел 1. Понятие события и его вероятности.
- •1.1. Предмет теории вероятности.
- •1.2. Алгебра событий. Пространство элементарных событий.
- •1.3. Классическое определение вероятности.
- •1.4. Геометрические вероятности.
- •1.5. Частота и вероятность.
- •1.6. Аксиоматическое построение теории вероятностей.
- •1.7. Условная вероятность и простейшие основные формулы.
- •1.8. Формула полной вероятности.
- •1.9 Формула Бейеса.
- •Раздел 2. Последовательные независимые испытания
- •2.1. Независимые испытания. Формулы Бернулли.
- •2.2. Обобщенная теорема о повторении опытов.
- •Раздел 3. Понятие случайной величины. Функция распределения и ее основные свойства.
- •3.1. Понятие случайной величины и функции распределения.
- •3.2. Свойства функции распределения.
- •3.3. Дискретные и непрерывные случайные величины.
- •3.4. Числовые характеристики случайных величин.
- •Раздел 4. Примеры распределений случайных величин.
- •4.1. Биномиальное распределение.
- •4.2. Теорема Пуассона
- •4.3. Закон Пуассона.
- •4.4. Равномерное распределение.
- •4.5. Показательное распределение.
- •4.6.Нормальный закон распределения.
- •Раздел 5. Системы случайных величин (случайные векторы).
- •5.1. Понятие о системе случайных величин.
- •5.2. Функция распределения системы двух случайных величин.
- •5.3. Плотность распределения системы двух случайных величин.
- •5.4. Законы распределения отдельных компонент, входящих в систему. Условные законы распределения.
- •5.5. Зависимые и независимые случайные величины.
- •5.6. Числовые характеристики системы двух случайных величин.
- •5.7. Система произвольного числа случайных величин (случайные вектора).
- •5.8. Числовые характеристики системы нескольких случайных величин.
- •Раздел 6. Законы распределения функций случайных аргументов.
- •6.1. Закон распределения функции одного случайного аргумента.
- •6.2. Закон распределения функции двух случайных величин.
- •6.3. Закон распределения суммы двух случайных величин. Композиция законов распределения.
- •6.4. Распределение произведения.
- •6.5. Распределение квадрата случайной величины.
- •6.6. Распределение частного.
- •6.7. Числовые характеристики функций случайных величин.
- •Раздел 7. Теоремы о числовых характеристиках.
- •7.1. Основные теоремы о математическом ожидании.
- •7.2. Теоремы о дисперсии случайной величины.
- •7.3. Теорема о линейной зависимости случайных величин.
- •Раздел 8. Характеристические функции.
- •8.1. Определение и простейшие свойства характеристических функций.
- •8.2. Предельные теоремы для характеристических функций.
- •Раздел 9. Предельные теоремы для случайных величин.
- •9.1. Сходимость последовательностей случайных величин.
- •9.2. Закон больших чисел.
- •9.3. Следствия закона больших чисел.
- •Раздел 10. Предельные теоремы теории вероятностей.
- •10.1. Центральная предельная теорема.
- •10.2. Теорема Ляпунова.
- •10.3. Теорема Лапласа.
- •2. Практические занятия, тесты, самостоятельная работа. Занятие 1. Непосредственный подсчет вероятности с использованием классического определения вероятности.
- •1.1. Краткая теоретическая часть.
- •1.2. Тест.
- •1.3. Решение типовых задач.
- •1.4. Задачи для самостоятельной работы.
- •Занятие 2. Геометрическое определение вероятности.
- •2.1. Краткая теоретическая часть.
- •2.2. Тест
- •2.3. Решение типовых задач
- •2.4. Задачи для самостоятельной работы
- •Занятие 3. Условная вероятность. Теорема умножения вероятностей.
- •3.1. Краткая теоретическая часть
- •3.2. Тест
- •3.3. Решение типовых задач
- •3.4. Задачи для самостоятельной работы
- •Занятие 4. Теорема сложения вероятностей.
- •4.1. Краткая теоретическая часть
- •4.2. Тест
- •4.3. Решение типовых задач
- •4.4. Задачи для самостоятельной работы
- •Занятие 5. Формула полной вероятности.
- •5.1. Краткая теоретическая часть
- •5.2. Тест.
- •5.3. Решение типовых задач
- •5.4. Задачи для самостоятельной работы
- •Занятие 6. Формула Бейеса.
- •6.1. Краткая теоретическая часть
- •6.2.Тест
- •6.3. Решение типовых задач
- •6.4. Задачи для самостоятельной работы
- •Занятие 7. Последовательные независимые испытания.
- •7.1. Краткая теоретическая часть
- •7.2. Тест
- •7.3. Решение типовых задач
- •7.4. Задачи для самостоятельной работы
- •Занятие 8. Дискретные и непрерывные случайные величины.
- •8.1. Краткая теоретическая часть а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •8.2. Тест
- •А) только к дискретным случайным величинам
- •8.3. Решение типовых задач а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Б) Функция распределения и плотность вероятности непрерывной случайной величины
- •8.4. Задачи для самостоятельной работы а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Занятие 9. Числовые характеристики дискретных случайных величин.
- •9.1. Краткая теоретическая часть
- •9.2. Тест
- •9.3. Решение типовых задач
- •9.4. Задачи для самостоятельной работы
- •Занятие 10. Дискретные и непрерывные случайные величины.
- •10.1. Краткая теоретическая часть
- •10.2. Тест
- •10.3. Решение типовых задач
- •10.4. Задачи для самостоятельной работы
- •Занятие 11. Закон Пуассона.
- •11.1. Краткая теоретическая часть
- •11.2. Тест
- •11.3. Решение типовых задач
- •11.4. Задачи для самостоятельной работы
- •Занятие 12. Закон нормального распределения.
- •12.1. Краткая теоретическая часть
- •12.2. Тест
- •12.3. Решение типовых задач
- •12.4. Задачи для самостоятельной работы
- •Литература
1.4. Геометрические вероятности.
Еще в самом начале развития теории вероятностей была замечена недостаточность «классического» определения вероятности, основанного на рассмотрении конечной группы равновероятных событий. Уже тогда частные примеры привели к некоторому видоизменению этого определения и построению понятия вероятности также для случаев, когда мыслимо бесконечное множество исходов. При этом по-прежнему основную роль играло понятие «равновероятности» некоторых событий.
Общая задача, которая ставилась и привела к расширению понятия вероятности, может быть сформулирована следующим способом.
Пусть, например, на плоскости имеется некоторая область G и в ней содержится другая область g с квадрируемой границей. В область G наудачу бросается точка и спрашивается, чему равна вероятность того, что точка попадет в область g. При этом выражению «точка бросается наудачу в область G» придается следующий смысл: брошенная точка может попасть в любую точку области G, вероятность попасть в какую-либо часть области G пропорциональна мере этой части (длине, площади и т. д.) и не зависит от ее расположения и формы.
Таким образом, по определению, вероятность попадания в область g при бросании наудачу точки в область G равна
|
(1.4.1) |
Рассмотрим несколько примеров.
Пример 1. Задача о встрече. Два лица А и В условились Встретиться в определенном месте между 12 часами и часом. Пришедший первым ждет другого в течение 20 минут, после чего уходит. Чему равна вероятность встречи лиц А и В, если приход каждого из них в течение указанного часа может произойти наудачу и моменты прихода независимы.
Решение. Обозначим моменты прихода лица А через х и лица В через у. Для того чтобы встреча произошла, необходимо и достаточно, чтобы .
Будем изображать хOу как декартовы координаты на плоскости; в качестве единицы масштаба выберем минуту. Всевозможные исходы изобразятся точками квадрата со сторонами 60; благоприятствующие
встрече — расположатся в заштрихованной области (рис. 1.4.1).
Искомая вероятность равна отношению площади заштрихованной фигуры к площади всего квадрата: .
Пример 3. Задача Бюффона. Плоскость разграфлена параллельными прямыми, отстоящими друг от друга на расстоянии 2а. На плоскость наудачу бросается игла длины 2l(l≤a). Найти вероятность того, что игла пересечет какую-нибудь прямую.
Решение. Обозначим через х расстояние от центра до ближайшей параллели и через —угол, составленный иглой с этой параллелью. Величины х и полностью определяют положение иглы. Всевозможные положения иглы определяются точками прямоугольника со сторонами a и . Из рис. 1.4.2. видно, что для пересечения иглы с параллелью необходимо и достаточно, чтобы .
Искомая вероятность в силу сделанных предположений равна отношению площади заштрихованной на рис. 1.4.3. области к площади прямоугольника
|
|
Заметим, что задача Бюффона являлась исходным пунктом для решения некоторых проблем теории стрельбы, учитывающих размеры снаряда.
Полученная формула была использована для опытного определения приближенного значения числа . Таких опытов с бросанием иглы было проведено довольно много. Мы приведем результаты лишь некоторых из них(см. Табл. 1.4.1).
Табл. 1.4.1
Экспериментатор |
Год |
Число бросков иглы |
Экспериментальное значение |
Вольф |
1850 |
5000 |
3,1596 |
Смит |
1855 |
3204 |
3,1553 |
Фокс |
1894 |
1120 |
3,1419 |
Так как из полученной нами формулы следует равенство , то при большом числе бросанийп приближенно , гдет — число происшедших при этом пересечений.