
- •Теория вероятностей
- •Содержание
- •Раздел 6. Законы распределения функций случайных аргументов. 90
- •1. Теоретическая часть. Введение
- •Раздел 1. Понятие события и его вероятности.
- •1.1. Предмет теории вероятности.
- •1.2. Алгебра событий. Пространство элементарных событий.
- •1.3. Классическое определение вероятности.
- •1.4. Геометрические вероятности.
- •1.5. Частота и вероятность.
- •1.6. Аксиоматическое построение теории вероятностей.
- •1.7. Условная вероятность и простейшие основные формулы.
- •1.8. Формула полной вероятности.
- •1.9 Формула Бейеса.
- •Раздел 2. Последовательные независимые испытания
- •2.1. Независимые испытания. Формулы Бернулли.
- •2.2. Обобщенная теорема о повторении опытов.
- •Раздел 3. Понятие случайной величины. Функция распределения и ее основные свойства.
- •3.1. Понятие случайной величины и функции распределения.
- •3.2. Свойства функции распределения.
- •3.3. Дискретные и непрерывные случайные величины.
- •3.4. Числовые характеристики случайных величин.
- •Раздел 4. Примеры распределений случайных величин.
- •4.1. Биномиальное распределение.
- •4.2. Теорема Пуассона
- •4.3. Закон Пуассона.
- •4.4. Равномерное распределение.
- •4.5. Показательное распределение.
- •4.6.Нормальный закон распределения.
- •Раздел 5. Системы случайных величин (случайные векторы).
- •5.1. Понятие о системе случайных величин.
- •5.2. Функция распределения системы двух случайных величин.
- •5.3. Плотность распределения системы двух случайных величин.
- •5.4. Законы распределения отдельных компонент, входящих в систему. Условные законы распределения.
- •5.5. Зависимые и независимые случайные величины.
- •5.6. Числовые характеристики системы двух случайных величин.
- •5.7. Система произвольного числа случайных величин (случайные вектора).
- •5.8. Числовые характеристики системы нескольких случайных величин.
- •Раздел 6. Законы распределения функций случайных аргументов.
- •6.1. Закон распределения функции одного случайного аргумента.
- •6.2. Закон распределения функции двух случайных величин.
- •6.3. Закон распределения суммы двух случайных величин. Композиция законов распределения.
- •6.4. Распределение произведения.
- •6.5. Распределение квадрата случайной величины.
- •6.6. Распределение частного.
- •6.7. Числовые характеристики функций случайных величин.
- •Раздел 7. Теоремы о числовых характеристиках.
- •7.1. Основные теоремы о математическом ожидании.
- •7.2. Теоремы о дисперсии случайной величины.
- •7.3. Теорема о линейной зависимости случайных величин.
- •Раздел 8. Характеристические функции.
- •8.1. Определение и простейшие свойства характеристических функций.
- •8.2. Предельные теоремы для характеристических функций.
- •Раздел 9. Предельные теоремы для случайных величин.
- •9.1. Сходимость последовательностей случайных величин.
- •9.2. Закон больших чисел.
- •9.3. Следствия закона больших чисел.
- •Раздел 10. Предельные теоремы теории вероятностей.
- •10.1. Центральная предельная теорема.
- •10.2. Теорема Ляпунова.
- •10.3. Теорема Лапласа.
- •2. Практические занятия, тесты, самостоятельная работа. Занятие 1. Непосредственный подсчет вероятности с использованием классического определения вероятности.
- •1.1. Краткая теоретическая часть.
- •1.2. Тест.
- •1.3. Решение типовых задач.
- •1.4. Задачи для самостоятельной работы.
- •Занятие 2. Геометрическое определение вероятности.
- •2.1. Краткая теоретическая часть.
- •2.2. Тест
- •2.3. Решение типовых задач
- •2.4. Задачи для самостоятельной работы
- •Занятие 3. Условная вероятность. Теорема умножения вероятностей.
- •3.1. Краткая теоретическая часть
- •3.2. Тест
- •3.3. Решение типовых задач
- •3.4. Задачи для самостоятельной работы
- •Занятие 4. Теорема сложения вероятностей.
- •4.1. Краткая теоретическая часть
- •4.2. Тест
- •4.3. Решение типовых задач
- •4.4. Задачи для самостоятельной работы
- •Занятие 5. Формула полной вероятности.
- •5.1. Краткая теоретическая часть
- •5.2. Тест.
- •5.3. Решение типовых задач
- •5.4. Задачи для самостоятельной работы
- •Занятие 6. Формула Бейеса.
- •6.1. Краткая теоретическая часть
- •6.2.Тест
- •6.3. Решение типовых задач
- •6.4. Задачи для самостоятельной работы
- •Занятие 7. Последовательные независимые испытания.
- •7.1. Краткая теоретическая часть
- •7.2. Тест
- •7.3. Решение типовых задач
- •7.4. Задачи для самостоятельной работы
- •Занятие 8. Дискретные и непрерывные случайные величины.
- •8.1. Краткая теоретическая часть а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •8.2. Тест
- •А) только к дискретным случайным величинам
- •8.3. Решение типовых задач а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Б) Функция распределения и плотность вероятности непрерывной случайной величины
- •8.4. Задачи для самостоятельной работы а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Занятие 9. Числовые характеристики дискретных случайных величин.
- •9.1. Краткая теоретическая часть
- •9.2. Тест
- •9.3. Решение типовых задач
- •9.4. Задачи для самостоятельной работы
- •Занятие 10. Дискретные и непрерывные случайные величины.
- •10.1. Краткая теоретическая часть
- •10.2. Тест
- •10.3. Решение типовых задач
- •10.4. Задачи для самостоятельной работы
- •Занятие 11. Закон Пуассона.
- •11.1. Краткая теоретическая часть
- •11.2. Тест
- •11.3. Решение типовых задач
- •11.4. Задачи для самостоятельной работы
- •Занятие 12. Закон нормального распределения.
- •12.1. Краткая теоретическая часть
- •12.2. Тест
- •12.3. Решение типовых задач
- •12.4. Задачи для самостоятельной работы
- •Литература
Занятие 8. Дискретные и непрерывные случайные величины.
8.1. Краткая теоретическая часть а) Ряд, многоугольник и функция распределения случайной дискретной величины
Случайная величина называется дискретной, если ее частные (возможные) значения можно пронумеровать.
Дискретная случайная величина Х может быть задана рядом распределения или функцией распределения (интегральным законом распределения).
Рядом распределения называется совокупность всех возможных значений xi, и соответствующих им вероятностей pi = P(X = xi). Ряд распределения может быть задан в виде таблицы (табл. 1) или формулой.
Таблица 1.
-
xi
x1
x2
…..
xn
pi
p1
p2
…..
pn
Вероятности pi удовлетворяют условию
,
где число возможных значений n может быть конечным или бесконечным.
Графическое изображение ряда распределения называется многоугольником распределения. Для его построения возможные значения случайной величины (xi) откладываются по оси абсцисс, а вероятности pi - по оси ординат; точки Ai с координатами (xi ; pi) соединяются ломаными линиями (рис. 1).
Функцией
распределения (интегральным законом
распределения) случайной величиныХ
называется функция F
(x),
равная
вероятности P(X<x)
того, что случайная величина будет
меньше произвольно выбранного значения
x.
Функция
F(x)
вычисляется по формуле
,
где суммирование ведется по всем значениям i, для которых xi<x.
б) Функция распределения и плотность вероятности непрерывной случайной величины
Случайная величина называется непрерывной, если существует неотрицательная функция f(x), удовлетворяющая при любых x равенству
.
Функция f(x) называется плотностью вероятности
.
Непрерывная случайная величина задается либо функцией распределения F(x) (интегральным законом распределения), либо плотностью вероятности f(x) (дифференциальным законом распределения).
Функция распределения F(x) = Р(X<x), где x — произвольное действительное число, дает вероятность того, что случайная величина Х окажется меньше x.
Функция распределения F(x) имеет следующие основные свойства:
Плотность вероятности (дифференциальный закон распределения) f(x) обладает следующими основными свойствами:
Величина xp, определяемая равенством F(xp) = p, называется квантилем порядка p, квантиль x0,5 называют медианой. Если плотность имеет максимум, то значение x, при котором f(x) достигает максимума, называется модой.
8.2. Тест
Дискретные и непрерывные случайные величины.
Какое из данных утверждений не является определением случайной величины?
а)
Случайной величиной
называется
вещественная функция, определенная на
элементах пространства элементарных
исходов
таким образом, что для любого числа
,
принадлежащего вещественной прямой,
множество
,
на котором функция
удовлетворяет неравенству
,
является элементом поля событий
,
то есть
б) Функция
называется случайной величиной, если
для любого события (
)
определена его вероятность
в) является случайной величиной, если для
него определена вероятность
г) Функция
есть случайная величина, если для любого
,
принадлежащего вещественной прямой,
событие
достоверно, то есть
Какое из следующих утверждений является определением функции распределения случайной величины?
а) Вероятность
является некоторой функцией аргумента
и называется функцией распределения
случайной величиныX
б) Вероятность
является
постоянной величиной и называется
функцией распределения случайной
величины X
в) Вероятность
является
некоторой функцией аргумента
и называется функцией распределения
случайной величиныX
Знание функции распределения случайной величины полностью с вероятностной точки зрения характеризует случайную величину. А что она определяет?
а) Функция
распределения случайной величины
определяет
вероятность того, что случайная величина
окажется меньше числа
,
где
- произвольное действительное число
б) Функция
распределения случайной величины
определяет
вероятность того, что случайная величина
окажется больше числа
,
где
- произвольное действительное число
в) Функция
распределения случайной величины
определяет
вероятность того, что случайная величина
окажется равной числу , где
- произвольное действительное число
Плотность распределения – это понятие, применимое: