- •Теория вероятностей
- •Содержание
- •Раздел 6. Законы распределения функций случайных аргументов. 90
- •1. Теоретическая часть. Введение
- •Раздел 1. Понятие события и его вероятности.
- •1.1. Предмет теории вероятности.
- •1.2. Алгебра событий. Пространство элементарных событий.
- •1.3. Классическое определение вероятности.
- •1.4. Геометрические вероятности.
- •1.5. Частота и вероятность.
- •1.6. Аксиоматическое построение теории вероятностей.
- •1.7. Условная вероятность и простейшие основные формулы.
- •1.8. Формула полной вероятности.
- •1.9 Формула Бейеса.
- •Раздел 2. Последовательные независимые испытания
- •2.1. Независимые испытания. Формулы Бернулли.
- •2.2. Обобщенная теорема о повторении опытов.
- •Раздел 3. Понятие случайной величины. Функция распределения и ее основные свойства.
- •3.1. Понятие случайной величины и функции распределения.
- •3.2. Свойства функции распределения.
- •3.3. Дискретные и непрерывные случайные величины.
- •3.4. Числовые характеристики случайных величин.
- •Раздел 4. Примеры распределений случайных величин.
- •4.1. Биномиальное распределение.
- •4.2. Теорема Пуассона
- •4.3. Закон Пуассона.
- •4.4. Равномерное распределение.
- •4.5. Показательное распределение.
- •4.6.Нормальный закон распределения.
- •Раздел 5. Системы случайных величин (случайные векторы).
- •5.1. Понятие о системе случайных величин.
- •5.2. Функция распределения системы двух случайных величин.
- •5.3. Плотность распределения системы двух случайных величин.
- •5.4. Законы распределения отдельных компонент, входящих в систему. Условные законы распределения.
- •5.5. Зависимые и независимые случайные величины.
- •5.6. Числовые характеристики системы двух случайных величин.
- •5.7. Система произвольного числа случайных величин (случайные вектора).
- •5.8. Числовые характеристики системы нескольких случайных величин.
- •Раздел 6. Законы распределения функций случайных аргументов.
- •6.1. Закон распределения функции одного случайного аргумента.
- •6.2. Закон распределения функции двух случайных величин.
- •6.3. Закон распределения суммы двух случайных величин. Композиция законов распределения.
- •6.4. Распределение произведения.
- •6.5. Распределение квадрата случайной величины.
- •6.6. Распределение частного.
- •6.7. Числовые характеристики функций случайных величин.
- •Раздел 7. Теоремы о числовых характеристиках.
- •7.1. Основные теоремы о математическом ожидании.
- •7.2. Теоремы о дисперсии случайной величины.
- •7.3. Теорема о линейной зависимости случайных величин.
- •Раздел 8. Характеристические функции.
- •8.1. Определение и простейшие свойства характеристических функций.
- •8.2. Предельные теоремы для характеристических функций.
- •Раздел 9. Предельные теоремы для случайных величин.
- •9.1. Сходимость последовательностей случайных величин.
- •9.2. Закон больших чисел.
- •9.3. Следствия закона больших чисел.
- •Раздел 10. Предельные теоремы теории вероятностей.
- •10.1. Центральная предельная теорема.
- •10.2. Теорема Ляпунова.
- •10.3. Теорема Лапласа.
- •2. Практические занятия, тесты, самостоятельная работа. Занятие 1. Непосредственный подсчет вероятности с использованием классического определения вероятности.
- •1.1. Краткая теоретическая часть.
- •1.2. Тест.
- •1.3. Решение типовых задач.
- •1.4. Задачи для самостоятельной работы.
- •Занятие 2. Геометрическое определение вероятности.
- •2.1. Краткая теоретическая часть.
- •2.2. Тест
- •2.3. Решение типовых задач
- •2.4. Задачи для самостоятельной работы
- •Занятие 3. Условная вероятность. Теорема умножения вероятностей.
- •3.1. Краткая теоретическая часть
- •3.2. Тест
- •3.3. Решение типовых задач
- •3.4. Задачи для самостоятельной работы
- •Занятие 4. Теорема сложения вероятностей.
- •4.1. Краткая теоретическая часть
- •4.2. Тест
- •4.3. Решение типовых задач
- •4.4. Задачи для самостоятельной работы
- •Занятие 5. Формула полной вероятности.
- •5.1. Краткая теоретическая часть
- •5.2. Тест.
- •5.3. Решение типовых задач
- •5.4. Задачи для самостоятельной работы
- •Занятие 6. Формула Бейеса.
- •6.1. Краткая теоретическая часть
- •6.2.Тест
- •6.3. Решение типовых задач
- •6.4. Задачи для самостоятельной работы
- •Занятие 7. Последовательные независимые испытания.
- •7.1. Краткая теоретическая часть
- •7.2. Тест
- •7.3. Решение типовых задач
- •7.4. Задачи для самостоятельной работы
- •Занятие 8. Дискретные и непрерывные случайные величины.
- •8.1. Краткая теоретическая часть а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •8.2. Тест
- •А) только к дискретным случайным величинам
- •8.3. Решение типовых задач а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Б) Функция распределения и плотность вероятности непрерывной случайной величины
- •8.4. Задачи для самостоятельной работы а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Занятие 9. Числовые характеристики дискретных случайных величин.
- •9.1. Краткая теоретическая часть
- •9.2. Тест
- •9.3. Решение типовых задач
- •9.4. Задачи для самостоятельной работы
- •Занятие 10. Дискретные и непрерывные случайные величины.
- •10.1. Краткая теоретическая часть
- •10.2. Тест
- •10.3. Решение типовых задач
- •10.4. Задачи для самостоятельной работы
- •Занятие 11. Закон Пуассона.
- •11.1. Краткая теоретическая часть
- •11.2. Тест
- •11.3. Решение типовых задач
- •11.4. Задачи для самостоятельной работы
- •Занятие 12. Закон нормального распределения.
- •12.1. Краткая теоретическая часть
- •12.2. Тест
- •12.3. Решение типовых задач
- •12.4. Задачи для самостоятельной работы
- •Литература
5.4. Задачи для самостоятельной работы
5.1. Имеются две партии изделий по 12 и 10 штук, причем в каждой партии одно изделие бракованное. Изделие, взятое наудачу из первой партии, переложено во вторую, после чего выбирается наудачу изделие из второй партии. Определить вероятность извлечения бракованного изделия из второй партии.
(Ответ: p = )
5.2. Из полного набора костей домино наугад берутся две кости. Определить вероятность того, что вторую кость можно приставить к первой.
(Ответ: p = )
5.3. Имеется n урн, в каждой из которых по m белых и по k черных шаров. Из первой урны наудачу извлекается один шар и перекладывается во вторую. Затем из второй урны наудачу извлекается один шар и перекладывается в третью урну и т. д. Определить вероятность извлечения после такого перекладывания белого шара из последней урны.
(Ответ: p = )
5.4. В тире имеются пять ружей, вероятности попадания из которых равны соответственно 0,5; 0,6; 0,7; 0,8 и 0,9. Определить вероятность попадания при одном выстреле, если стреляющий берет одно из ружей наудачу.
(Ответ: p = 0,7)
5.5. Для контроля продукции из трех партий деталей взята для испытания одна деталь. Как велика вероятность обнаружения бракованной продукции, если в одной партии деталей бракованные, а в двух других — все доброкачественные?
(Ответ: p = )
5.6. Характеристика материала, взятого для изготовления продукции, с вероятностями 0,09; 0,16; 0,25; 0,25; 0,16 и 0,09 может находиться в шести различных интервалах. В зависимости от свойств материала вероятности получения первосортной продукции равны соответственно 0,2; 0,3; 0,4; 0,4; 0,3 и 0,2. Определить вероятность получения первосортной продукции.
(Ответ: p = 0,332)
5.7. В сосуд, содержащий n шаров, опущен белый шар. Какова вероятность извлечь из этого сосуда белый шар, если все предположения о первоначальном числе белых шаров равновозможны?
(Ответ: p = )
5.8. В ящике находятся 15 теннисных мячей, из которых 9 новых. Для первой игры наугад берутся три мяча, которые после игры возвращаются в ящик. Для второй игры также наугад берутся три мяча. Найти вероятность того, что все мячи, взятые для второй игры, новые.
(Ответ: p = 0,089)
5.9. В правом кармане имеются три монеты по 20 коп. и четыре монеты по 3 коп., а в левом — шесть по 20 коп. и три по 3 коп. Из правого кармана в левый наудачу перекладываются пять монет. Определить вероятность извлечения из левого кармана после перекладывания монеты в 20 коп, если монета берется наудачу.
(Ответ: p = )
5.10. Пятнадцать экзаменационных билетов содержат по два вопроса, которые не повторяются. Экзаменующийся может ответить только на 25 вопросов. Определить вероятность того, что экзамен будет сдан, если для этого достаточно ответить на два вопроса из одного билета или на один вопрос из первого билета и на указанный дополнительный вопрос из другого билета.
(Ответ: p = ).
Занятие 6. Формула Бейеса.
6.1. Краткая теоретическая часть
Получим важные формулы Бейеса или, как иногда говорят, формулы вероятности гипотез. Требуется найти вероятность события Ai , если известно, что В произошло. Согласно теореме умножения имеем:
|
(6.1) |
Из соотношения (6.1) получаем
|
(6.2) |
Используя формулу полной вероятности (5.1), находим:
|
(6.3) |
Полученные формулы (6.3) носят название формул Бейеса. Общая схема применения этих формул к решению практических задач такова. Пусть событие В может протекать в различных условиях, относительно характера которых может быть сделано n гипотез: . По тем или иным причинам нам известны вероятностиэтих гипотез до испытания (априорные вероятности гипотез). Известно также, что гипотезасообщает событиювероятность. Произведен опыт, в котором событиеВ наступило. Это должно вызвать переоценку вероятностей гипотез ; формулы Бейеса количественно решают этот вопрос.
Вероятности называются апостериорными вероятностями события .