
- •Теория вероятностей
- •Содержание
- •Раздел 6. Законы распределения функций случайных аргументов. 90
- •1. Теоретическая часть. Введение
- •Раздел 1. Понятие события и его вероятности.
- •1.1. Предмет теории вероятности.
- •1.2. Алгебра событий. Пространство элементарных событий.
- •1.3. Классическое определение вероятности.
- •1.4. Геометрические вероятности.
- •1.5. Частота и вероятность.
- •1.6. Аксиоматическое построение теории вероятностей.
- •1.7. Условная вероятность и простейшие основные формулы.
- •1.8. Формула полной вероятности.
- •1.9 Формула Бейеса.
- •Раздел 2. Последовательные независимые испытания
- •2.1. Независимые испытания. Формулы Бернулли.
- •2.2. Обобщенная теорема о повторении опытов.
- •Раздел 3. Понятие случайной величины. Функция распределения и ее основные свойства.
- •3.1. Понятие случайной величины и функции распределения.
- •3.2. Свойства функции распределения.
- •3.3. Дискретные и непрерывные случайные величины.
- •3.4. Числовые характеристики случайных величин.
- •Раздел 4. Примеры распределений случайных величин.
- •4.1. Биномиальное распределение.
- •4.2. Теорема Пуассона
- •4.3. Закон Пуассона.
- •4.4. Равномерное распределение.
- •4.5. Показательное распределение.
- •4.6.Нормальный закон распределения.
- •Раздел 5. Системы случайных величин (случайные векторы).
- •5.1. Понятие о системе случайных величин.
- •5.2. Функция распределения системы двух случайных величин.
- •5.3. Плотность распределения системы двух случайных величин.
- •5.4. Законы распределения отдельных компонент, входящих в систему. Условные законы распределения.
- •5.5. Зависимые и независимые случайные величины.
- •5.6. Числовые характеристики системы двух случайных величин.
- •5.7. Система произвольного числа случайных величин (случайные вектора).
- •5.8. Числовые характеристики системы нескольких случайных величин.
- •Раздел 6. Законы распределения функций случайных аргументов.
- •6.1. Закон распределения функции одного случайного аргумента.
- •6.2. Закон распределения функции двух случайных величин.
- •6.3. Закон распределения суммы двух случайных величин. Композиция законов распределения.
- •6.4. Распределение произведения.
- •6.5. Распределение квадрата случайной величины.
- •6.6. Распределение частного.
- •6.7. Числовые характеристики функций случайных величин.
- •Раздел 7. Теоремы о числовых характеристиках.
- •7.1. Основные теоремы о математическом ожидании.
- •7.2. Теоремы о дисперсии случайной величины.
- •7.3. Теорема о линейной зависимости случайных величин.
- •Раздел 8. Характеристические функции.
- •8.1. Определение и простейшие свойства характеристических функций.
- •8.2. Предельные теоремы для характеристических функций.
- •Раздел 9. Предельные теоремы для случайных величин.
- •9.1. Сходимость последовательностей случайных величин.
- •9.2. Закон больших чисел.
- •9.3. Следствия закона больших чисел.
- •Раздел 10. Предельные теоремы теории вероятностей.
- •10.1. Центральная предельная теорема.
- •10.2. Теорема Ляпунова.
- •10.3. Теорема Лапласа.
- •2. Практические занятия, тесты, самостоятельная работа. Занятие 1. Непосредственный подсчет вероятности с использованием классического определения вероятности.
- •1.1. Краткая теоретическая часть.
- •1.2. Тест.
- •1.3. Решение типовых задач.
- •1.4. Задачи для самостоятельной работы.
- •Занятие 2. Геометрическое определение вероятности.
- •2.1. Краткая теоретическая часть.
- •2.2. Тест
- •2.3. Решение типовых задач
- •2.4. Задачи для самостоятельной работы
- •Занятие 3. Условная вероятность. Теорема умножения вероятностей.
- •3.1. Краткая теоретическая часть
- •3.2. Тест
- •3.3. Решение типовых задач
- •3.4. Задачи для самостоятельной работы
- •Занятие 4. Теорема сложения вероятностей.
- •4.1. Краткая теоретическая часть
- •4.2. Тест
- •4.3. Решение типовых задач
- •4.4. Задачи для самостоятельной работы
- •Занятие 5. Формула полной вероятности.
- •5.1. Краткая теоретическая часть
- •5.2. Тест.
- •5.3. Решение типовых задач
- •5.4. Задачи для самостоятельной работы
- •Занятие 6. Формула Бейеса.
- •6.1. Краткая теоретическая часть
- •6.2.Тест
- •6.3. Решение типовых задач
- •6.4. Задачи для самостоятельной работы
- •Занятие 7. Последовательные независимые испытания.
- •7.1. Краткая теоретическая часть
- •7.2. Тест
- •7.3. Решение типовых задач
- •7.4. Задачи для самостоятельной работы
- •Занятие 8. Дискретные и непрерывные случайные величины.
- •8.1. Краткая теоретическая часть а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •8.2. Тест
- •А) только к дискретным случайным величинам
- •8.3. Решение типовых задач а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Б) Функция распределения и плотность вероятности непрерывной случайной величины
- •8.4. Задачи для самостоятельной работы а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Занятие 9. Числовые характеристики дискретных случайных величин.
- •9.1. Краткая теоретическая часть
- •9.2. Тест
- •9.3. Решение типовых задач
- •9.4. Задачи для самостоятельной работы
- •Занятие 10. Дискретные и непрерывные случайные величины.
- •10.1. Краткая теоретическая часть
- •10.2. Тест
- •10.3. Решение типовых задач
- •10.4. Задачи для самостоятельной работы
- •Занятие 11. Закон Пуассона.
- •11.1. Краткая теоретическая часть
- •11.2. Тест
- •11.3. Решение типовых задач
- •11.4. Задачи для самостоятельной работы
- •Занятие 12. Закон нормального распределения.
- •12.1. Краткая теоретическая часть
- •12.2. Тест
- •12.3. Решение типовых задач
- •12.4. Задачи для самостоятельной работы
- •Литература
5.4. Законы распределения отдельных компонент, входящих в систему. Условные законы распределения.
Зная закон распределения системы двух случайных величин, можно всегда определить законы распределения отдельных компонент (маргинальные законы распределения), входящих в систему.
|
(5.4.1) |
Выразим теперь маргинальные плотности распределения каждой из величин, входящих в систему, через плотность распределения системы.
|
(5.4.2) |
дифференцируя по х соотношение (5.4.2), получим выражение для плотности распределения величины X:
|
(5.4.3) |
Аналогично
|
(5.4.4) |
Таким образом, для того чтобы получить плотность распределения одной из величин, входящих в систему, нужно плотность совместного распределения системы проинтегрировать в бесконечных пределах по аргументу, соответствующему другой случайной величине.
Зная закон распределения системы (заданный в виде функции распределения или плотности распределения), можно найти законы распределения отдельных величин, входящих в систему. Естественно, возникает вопрос об обратной задаче: нельзя ли по маргинальным законам распределения отдельных величин, входящих в систему, восстановить закон распределения системы? Оказывается, что в общем случае этого сделать нельзя, так как неизвестна зависимость между случайными компонентами. Эта зависимость может быть охарактеризована с помощью условных законов распределения.
Определение 1. Условным законом распределения величины X, входящей в систему (X,Y), называется ее закон распределения, определенный при условии, что другая случайная величина Y приняла значение у.
Условная функция распределения, обозначается F(x|y), условная плотность распределения f(x|y).
Чтобы усвоить понятие условного закона распределения, рассмотрим пример. Система случайных величин L и Q представляет собой длину и вес осколка снаряда. Пусть нас интересует длина осколка L безотносительно к его весу; это есть случайная величина, подчиненная закону распределения с плотностью f1(l). Этот закон распределения мы можем исследовать, рассматривая все без исключения, осколки и оценивая их только по длине; f1(l) есть безусловный закон распределения длины осколка. Однако нас может интересовать и закон распределения длины осколка вполне определенного веса, например 10 г. Для того чтобы его определить, мы будем исследовать не все осколки, а только определенную весовую группу, в которой вес приблизительно равен 10 г, и получим условный закон распределения длины осколка при весе 10 г с плотностью f1(l|q) при q = 10. Этот условный закон распределения вообще отличается от безусловного f1(l); очевидно, более тяжелые осколки должны в среднем обладать и большей длиной; следовательно, условный закон распределения длины осколка существенно зависит от веса q.
Зная закон распределения одной из величин, входящих в систему, и условный закон распределения второй, можно определить закон распределения системы. Для этого воспользуемся понятием элемента вероятности. Рассмотрим прилежащий к точке (х,у) элементарный прямоугольник Rd со сторонами dx,dy (рис. 5.4.1). Вероятность попадания в этот прямоугольник
— элемент вероятности f(x,у)dxdy — равна вероятности одновременного попадания случайной точки (X,Y) в элементарную полосу I, опирающуюся на отрезок dx, и в полосу II, опирающуюся на отрезок dy:
|
|
Вероятность произведения этих двух событий, по теореме умножения вероятностей, равна вероятности попадания в элементарную полосу I, умноженной на условную вероятность попадания в элементарную полосу II, вычисленную при условии, что первое событие имело место. Это условие в пределе равносильно условию X = х; следовательно,
|
|
откуда
|
(5.4.5) |
т. е. плотность распределения системы двух величин равна плотности распределения одной из величин, входящих в систему, умноженной на условную плотность распределения другой величины, вычисленную при условии, что первая величина приняла заданное значение.
Формулу (5.4.5) часто называют теоремой умножения законов распределения. Эта теорема в схеме случайных величин аналогична теореме умножения вероятностей в схеме событий.
Очевидно, формуле (5.4.5) можно придать другой вид, если задать значение не величины X, а величины Y: ,
|
(5.4.6) |
Разрешая формулы (5.4.5) и (5.4.6) относительно f(y|x) и f(x|y), получим выражения условных законов распределения через безусловные:
|
(5.4.7) |
или
|
(5.4.8) |