- •Теория вероятностей
- •Содержание
- •Раздел 6. Законы распределения функций случайных аргументов. 90
- •1. Теоретическая часть. Введение
- •Раздел 1. Понятие события и его вероятности.
- •1.1. Предмет теории вероятности.
- •1.2. Алгебра событий. Пространство элементарных событий.
- •1.3. Классическое определение вероятности.
- •1.4. Геометрические вероятности.
- •1.5. Частота и вероятность.
- •1.6. Аксиоматическое построение теории вероятностей.
- •1.7. Условная вероятность и простейшие основные формулы.
- •1.8. Формула полной вероятности.
- •1.9 Формула Бейеса.
- •Раздел 2. Последовательные независимые испытания
- •2.1. Независимые испытания. Формулы Бернулли.
- •2.2. Обобщенная теорема о повторении опытов.
- •Раздел 3. Понятие случайной величины. Функция распределения и ее основные свойства.
- •3.1. Понятие случайной величины и функции распределения.
- •3.2. Свойства функции распределения.
- •3.3. Дискретные и непрерывные случайные величины.
- •3.4. Числовые характеристики случайных величин.
- •Раздел 4. Примеры распределений случайных величин.
- •4.1. Биномиальное распределение.
- •4.2. Теорема Пуассона
- •4.3. Закон Пуассона.
- •4.4. Равномерное распределение.
- •4.5. Показательное распределение.
- •4.6.Нормальный закон распределения.
- •Раздел 5. Системы случайных величин (случайные векторы).
- •5.1. Понятие о системе случайных величин.
- •5.2. Функция распределения системы двух случайных величин.
- •5.3. Плотность распределения системы двух случайных величин.
- •5.4. Законы распределения отдельных компонент, входящих в систему. Условные законы распределения.
- •5.5. Зависимые и независимые случайные величины.
- •5.6. Числовые характеристики системы двух случайных величин.
- •5.7. Система произвольного числа случайных величин (случайные вектора).
- •5.8. Числовые характеристики системы нескольких случайных величин.
- •Раздел 6. Законы распределения функций случайных аргументов.
- •6.1. Закон распределения функции одного случайного аргумента.
- •6.2. Закон распределения функции двух случайных величин.
- •6.3. Закон распределения суммы двух случайных величин. Композиция законов распределения.
- •6.4. Распределение произведения.
- •6.5. Распределение квадрата случайной величины.
- •6.6. Распределение частного.
- •6.7. Числовые характеристики функций случайных величин.
- •Раздел 7. Теоремы о числовых характеристиках.
- •7.1. Основные теоремы о математическом ожидании.
- •7.2. Теоремы о дисперсии случайной величины.
- •7.3. Теорема о линейной зависимости случайных величин.
- •Раздел 8. Характеристические функции.
- •8.1. Определение и простейшие свойства характеристических функций.
- •8.2. Предельные теоремы для характеристических функций.
- •Раздел 9. Предельные теоремы для случайных величин.
- •9.1. Сходимость последовательностей случайных величин.
- •9.2. Закон больших чисел.
- •9.3. Следствия закона больших чисел.
- •Раздел 10. Предельные теоремы теории вероятностей.
- •10.1. Центральная предельная теорема.
- •10.2. Теорема Ляпунова.
- •10.3. Теорема Лапласа.
- •2. Практические занятия, тесты, самостоятельная работа. Занятие 1. Непосредственный подсчет вероятности с использованием классического определения вероятности.
- •1.1. Краткая теоретическая часть.
- •1.2. Тест.
- •1.3. Решение типовых задач.
- •1.4. Задачи для самостоятельной работы.
- •Занятие 2. Геометрическое определение вероятности.
- •2.1. Краткая теоретическая часть.
- •2.2. Тест
- •2.3. Решение типовых задач
- •2.4. Задачи для самостоятельной работы
- •Занятие 3. Условная вероятность. Теорема умножения вероятностей.
- •3.1. Краткая теоретическая часть
- •3.2. Тест
- •3.3. Решение типовых задач
- •3.4. Задачи для самостоятельной работы
- •Занятие 4. Теорема сложения вероятностей.
- •4.1. Краткая теоретическая часть
- •4.2. Тест
- •4.3. Решение типовых задач
- •4.4. Задачи для самостоятельной работы
- •Занятие 5. Формула полной вероятности.
- •5.1. Краткая теоретическая часть
- •5.2. Тест.
- •5.3. Решение типовых задач
- •5.4. Задачи для самостоятельной работы
- •Занятие 6. Формула Бейеса.
- •6.1. Краткая теоретическая часть
- •6.2.Тест
- •6.3. Решение типовых задач
- •6.4. Задачи для самостоятельной работы
- •Занятие 7. Последовательные независимые испытания.
- •7.1. Краткая теоретическая часть
- •7.2. Тест
- •7.3. Решение типовых задач
- •7.4. Задачи для самостоятельной работы
- •Занятие 8. Дискретные и непрерывные случайные величины.
- •8.1. Краткая теоретическая часть а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •8.2. Тест
- •А) только к дискретным случайным величинам
- •8.3. Решение типовых задач а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Б) Функция распределения и плотность вероятности непрерывной случайной величины
- •8.4. Задачи для самостоятельной работы а) Ряд, многоугольник и функция распределения случайной дискретной величины
- •Занятие 9. Числовые характеристики дискретных случайных величин.
- •9.1. Краткая теоретическая часть
- •9.2. Тест
- •9.3. Решение типовых задач
- •9.4. Задачи для самостоятельной работы
- •Занятие 10. Дискретные и непрерывные случайные величины.
- •10.1. Краткая теоретическая часть
- •10.2. Тест
- •10.3. Решение типовых задач
- •10.4. Задачи для самостоятельной работы
- •Занятие 11. Закон Пуассона.
- •11.1. Краткая теоретическая часть
- •11.2. Тест
- •11.3. Решение типовых задач
- •11.4. Задачи для самостоятельной работы
- •Занятие 12. Закон нормального распределения.
- •12.1. Краткая теоретическая часть
- •12.2. Тест
- •12.3. Решение типовых задач
- •12.4. Задачи для самостоятельной работы
- •Литература
Раздел 5. Системы случайных величин (случайные векторы).
5.1. Понятие о системе случайных величин.
В практических приложениях теории вероятностей очень часто приходится сталкиваться с задачами, в которых результат опыта описывается двумя или более случайными величинами, образующими систему или вектор. Например, при стрельбе группой из п выстрелов совокупность точек попадания на плоскости может рассматриваться как система 2n случайных величин: п абсцисс и п ординат точек попадания. Условимся систему нескольких случайных величин называть случайным вектором и обозначать Х= (X1, Х2,...., Хn).
Свойства системы случайных величин (или случайного вектора) не исчерпываются свойствами отдельных компонент: помимо этого, они включают также взаимные связи (зависимости) между случайными компонентами.
При рассмотрении вопросов, связанных с системами случайных величин, удобно пользоваться геометрической интерпретацией системы. Например, систему двух случайных величин (X,Y) можно изображать случайной точкой на плоскости с координатами X и Y (рис. 5.1.1). Аналогично система трех случайных величин может быть изображена случайной точкой в трехмерном пространстве. Часто бывает удобно говорить о системе п случайных величин как о «случайной точке в пространстве п измерений». Вместо образа случайной точки для геометрической интерпретации системы случайных величин пользуются образом случайного вектора. Систему двух случайных величин при этом рассматривают как случайный вектор на плоскости хОу, составляющие которого по осям представляют собой случайные величины X, Y (рис. 5.1.2).
При этом теория систем случайных величин рассматривается как теория случайных векторов.
В данном курсе мы будем в зависимости от удобства изложения пользоваться как одной, так и другой интерпретацией.
Занимаясь изучением свойств случайных векторов, мы будем рассматривать как полные, исчерпывающие вероятностные характеристики — законы распределения, так и неполные — числовые характеристики.
Изложение начнем с наиболее простого случая системы двух случайных величин(двухмерного случайного вектора).
5.2. Функция распределения системы двух случайных величин.
Функцией распределения системы двух случайных величин (X,Y) называется вероятность совместного выполнения двух неравенств X<х и Y<у:
|
(5.2.1) |
Если пользоваться для геометрической интерпретации системы образом случайной точки (случайного вектора), то функция распределения F(х,у) есть не что иное, как вероятность попадания случайной точки (X,Y) в бесконечный квадрант с вершиной в точке (х,у), лежащий левее и ниже ее (рис. 5.2.1).
Сформулируем свойства функции распределения системы случайных величин.
1. Функция распределения F(x,у) есть неубывающая функция обоих своих аргументов, т. е.
В этом свойстве функции F(х) можно наглядно убедиться, пользуясь геометрической интерпретацией функции распределения как вероятности попадания в квадрант с вершиной (х,у) (рис. 5.2.1). Действительно, увеличивая х (смещая правую границу квадранта вправо) или увеличивая у (смещая верхнюю границу вверх), мы, очевидно, не можем уменьшить вероятность попадания в этот квадрант.
2. Повсюду на функция распределения равна нулю:
F(x, ) = F(,y) = F(,) = 0.
В этом свойстве мы наглядно убеждаемся, неограниченно отодвигая влево правую границу квадранта (x ) или вниз его верхнюю границу (у) или делая это одновременно с обеими границами; при этом вероятность попадания в квадрант стремится к нулю.
3. При одном из аргументов, равном , функция распределения системы превращается в маргинальную функцию распределения случайной величины, соответствующей другому аргументу:
F (x, ) = Fl (x), F (,у) = F2 (у),
где F1(x), F2(y) — соответственно маргинальные функции распределения случайных величин X и Y.
4. Если оба аргумента равны , функция распределения системы равна единице:
F(,)= 1
Действительно, при x,yквадрант с вершиной(х,у) в пределе обращается во всю плоскость хОу, попадание в которую есть достоверное событие.
Условимся событие, состоящее в попадании случайной точки (X, Y) в область D, обозначать символом (X, Y)D.
Вероятность попадания случайной точки в заданную область выражается наиболее просто в том случае, когда эта область представляет собой прямоугольник со сторонами, параллельными координатным осям.
Выразим через функцию распределения системы вероятность попадания случайной точки (X, Y) в прямоугольник R, ограниченный абсциссами иординатамии(рис. 5.2.2).
Тогда событие (X,Y)R будет равносильно произведению двух событий: Хи Х. Выразим вероятность этого события через
функцию распределения системы. Для этого рассмотрим на плоскости хОу четыре бесконечных квадранта с вершинами в точках рис. 5.2.3.
Очевидно, вероятность попадания в прямоугольник R равна вероятности попадания в квадрант минус вероятность попадания в квадрантминус вероятность попадания в квадрантплюс вероятность попадания в квадрант(так как мы дважды вычли вероятность попадания в этот квадрант). Отсюда получаем формулу, выражающую вероятность попадания в прямоугольник через функцию распределения системы:
|
(5.2.2) |