Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория вероятностей методичка.doc
Скачиваний:
886
Добавлен:
12.03.2015
Размер:
3.44 Mб
Скачать

3.2. Свойства функции распределения.

Свойство 1. Функция распределения любой случайной величины, есть неубывающая функция.

Зная функцию распределения случайной величины X, можно определить вероятность неравенства x1X<x2 при любых . В самом деле, если через A обозначить событие, состоящее в том, что X, примет значение, меньшее чем x2, через В—событие, состоя­щее в том, что X < x1, наконец, через С — событие x1X<x2 ,то, очевидно, имеет место следующее равенство:

(3.2.1)

Так как события В и С несовместимы, то Р(А)=P(B)+Р(C).

Но

(3.2.2)

поэтому

(3.2.3)

Так как, по определению, вероятность есть неотрицательное число, то из равенства (3.2.3) следует, что при любых x1 и (x2>x1) имеет место неравенство

(3.2.4)

что и требовалось доказать.

Свойство 2. .Так как, функция распределения , то согласно свойств вероятности при любом х удовлетворяет неравенству

(3.2.5)

Свойство 3. Функция распределения может иметь не более чем счетное множество скачков.

Мы скажем, что функция распределения F(х) имеет при х=x0 скачок, если

(3.2.6)

В самом деле, скачков размера , функция распределения может иметь не более одного, скачков размера от одной четвертой до половины - не более трех. Вообще скачков размера отдоможет быть не более чем. Совершенно ясно, что мы можем пронумеровать все скачки, расположив их по величине, начиная с больших значений и повторяя равные значения столько раз, сколько скачков этой величины имеет функцияF(х).

Свойство 4. . Определим иравенствами

и докажем, что .

Действительно, так как неравенство X< + достоверно, то

Обозначим через событие, состоящее в том, что . Так как событие , эквивалентно сумме событий , то на основании расширенной аксиомы сложения . Следовательно, при

Отсюда, принимая во внимание неравенства (3.2.5), заключаем, что при .

Свойство 5. Функция распределения непрерывна слева.

Выберем какую-нибудь возрастающую последовательность , сходящуюся к x.

Обозначим через An, событие . Тогда ясно, что , при i>j, и произведение всех событий An, есть невозможное событие. По аксиоме непрерывности должно быть

что и требовалось доказать.

3.3. Дискретные и непрерывные случайные величины.

Определение 1. Случайная величина X называется дискретной, если множество значений, которое она может принимать не более чем счетно, то есть либо конечно либо счетно. (Множество называется счетным, если каждому элементу можно поставить в соответствие число натурального ряда).

Пусть X – дискретная случайная величина принимает значение при этом будем предполагать, что всепопарно различны.

Определение 2. Рядом распределения дискретной случайной величины X называется совокупность пар чисел , где- возможные значения случайной величины, аpi – вероятности, с которыми она принимает эти значения. События образуют полную группу попарно не совместных событий. Ряд распределения можно представить в виде таблицы(Табл.3.3.1) или многоугольника распределения(Рис.3.3.1).

Табл.3.3.1

xi

X1

x2

xn

pi

P1

p2

pn

Зная ряд распределения, либо многоугольник распределения можно построить функцию распределения случайной величины(Рис. 3.3.2), которая является исчерпывающей характеристикой случайной величины X.

(3.3.6.)

Отметим, что величина скачка в точке, являющейся возможным значением случайной величины, равна вероятности pi того, что случайная величина Х примет значение xi.

Пример. Производится три выстрела по мишени. Вероятность попадания при одном выстреле равна 0,4. Построить ряд распределения для числа попаданий в мишень(см. Табл.3.3.2).

Х - число попаданий в мишень при трех выстрелах.

Табл.3.3.2

xi

0

1

2

3

pi

0,216

0,432

0,288

0,064

В качестве другого важного класса случайных величин можно выделить непрерывные случайные величины.

Определение 3. Распределение случайной величины X называется непрерывным, если существует такая, интегрируемая функция , что выполняется условие

(3.3.7)

Функция f(x) называется плотностью вероятности(плотностью распределения вероятности) или дифференциальным законом распределения.

Свойства плотности распределения.

1)- не отрицательная функция.

2)Если F(x) – дифференцируемая функция, то

3)Вероятность того, что случайная величина будет находится в пределах определяется соотношением

(3.3.8)

4)

(3.3.9)

Плотность распределения, так же как и функция распределения есть одна из форм закона распределения. Однако она не является универсальной характеристикой случайной величины, так как существует только для непрерывных случайных величин.

Рассмотрим непрерывную случайную величину Х с плотностью распределения f(x)( Рис.3.3.3).

Выделим элементарный участок dx. Вероятность попадания величины Х на этот участок f(x)dx называют элементом вероятности.