Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика лекции / конспект часть 1.doc
Скачиваний:
158
Добавлен:
08.03.2015
Размер:
2.28 Mб
Скачать

1.4.3.Энергия поляризованного диэлектрика

Рассмотрим однородный изотропный диэлектрик, находящийся во внешнем электрическом поле. Процесс поляризации связан с работой по деформации электронных орбит в атомах и молекулах и по повороту осей молекул-диполей вдоль поля. Ясно, что поляризованный диэлектрик должен обладать запасом электрической энергии.

Если поле напряженностью создано в вакууме,, то объемная плотность энергии этого поля в точке с напряженностьюравна:

Докажем, что объемная плотность энергии поляризованного диэлектрика в этой точке выражается формулой:

.

Рассмотрим диэлектрик с неполярными молекулами. Молекулы такого диэлектрика являются упругими диполями. Электрический момент упругого диполя, находящегося в поле с напряженностью , равен, где- поляризуемость диполя.

Или в скалярной форме:

(1.4.1)

- заряд и плечо диполя.

На заряд со стороны поля действует сила, которая при увеличении длины диполя насовершает работу

.

Из выражения (1.4.1) получаем: ,

поэтому

. (1.4.2)

Чтобы найти работу поля при деформации одного упругого диполя, надо проинтегрировать выражение (1.4.2):

.

Работа равна той потенциальной энергии, которой обладает упругий диполь в электрическом поле напряженностью. Пусть- число диполей в единице объема диэлектрика. Тогда потенциальная энергия всех этих диполей, то есть объемная плотность энергии поляризованного диэлектрика равна:

.

Однако - модуль вектора поляризации, тогда. Известно, что, и, тогда, что и требовалось доказать.

1.4.4. Закон сохранения энергии для электрического поля в несегнетоэлектрической среде

Энергия электрического поля, создаваемого какой-либо системой заряженных тел (проводников, диэлектриков), изменяется, если тела системы перемещаются (то есть меняется взаимное положение тел), или, если изменяются их заряды. При этом совершают работу внешние силы, приложенные к телам системы, и источники электрической энергии (батареи, генераторы, и тому подобные), присоединенные к проводникам системы.

Закон сохранения энергии для малого изменения состояния системы при постоянной температуре и постоянной плотности среды имеет вид:

.

Здесь: - работа внешних сил;- работа источников электрической энергии;- изменение энергии электростатического поля системы;- изменение кинетической энергии системы;- теплота Джоуля - Ленца, которая вызвана прохождением электрических токов в системе при изменении или перераспределении зарядов проводников.

Если перемещение тел производится квазистатически, то есть очень медленно, то можно пренебречь изменением кинетической энергии системы, , и считать работу внешних силчисленно равной и противоположной по знаку работе, совершаемой в рассматриваемом процессе силами, которые действуют на тела системы в электрическом поле и называются пондемоторными силами. В этом случае закон сохранения энергии можно записать в виде:

.

Работа источников электрической энергии за малый промежуток времени равна:

,

где - общее число источников электрической энергии в рассматриваемой системе;

- ЭДС-того источника,- заряд, проходящий через этот источник за время,- ток в источнике, работа, если токидет от катода к аноду.

Если заряд каждого проводника не изменяется и не перераспределяется , то выражение закона сохранения энергии для квазистатического изменения состояния системы имеет вид:

,

то есть в этом процессе работа пондемоторных сил равна убыли энергии электрического поля системы. С помощью этого выражения можно рассчитывать работу пондемоторных сил.

Пример. Найдем силы, действующие на пластины заряженного плоского конденсатора. Расстояние между пластинами , где- площадь пластины.

Конденсатор заряжен и отключен от источника питания, так что заряд конденсатора ,- поверхностная плотность заряда. При увеличении расстояния сила, приложенная к перемещаемой пластине, совершает работу. Изменение энергии электростатического поля в конденсаторе, где- объемная плотность энергии в прилегающем к пластине слое толщиной. Таким образом, из закона сохранения энергии следует, что пондемоторная сила равна

.

Возможны два случая:

  1. Конденсатор с газообразным или жидким диэлектриком между пластинами. В этом случае все пространство между пластинами конденсатора независимо от величины расстояния между ними заполнено одним и тем же диэлектриком с относительной диэлектрической проницаемостью , тогда;, где- пондемоторная сила, действующая в вакууме.

  2. Конденсатор с твердым диэлектриком между пластинами. В этом случае в слое толщиной , образовавшемся в результате отодвигания пластины конденсатора находится воздух, относительная диэлектрическая проницаемость которого. Поэтому;.

35