
- •Оглавление
- •Глава 1. Введение в электроэнергетику. Цели и задачи курса. Основные понятия. Номинальные напряжения
- •Физическая природа электричества
- •Свойства электроэнергии
- •Цель и задачи курса
- •Электрическая сеть, как часть электрической системы
- •Номинальные напряжения
- •Область использования номинальных напряжений
- •Глава 2. Классификация электрических сетей
- •Глава 3. Основные сведения о конструкциях линий электропередач
- •3.1. Воздушные линии электропередас (влэп)
- •3.2. Кабельные линии электропередач (клэп)
- •Глава 4. Схемы замещения и параметры элементов электрических сетей
- •4.1. Активное сопротивление
- •4.2. Индуктивное сопротивление
- •4.3. Активная проводимость
- •4.4. Реактивная (емкостная проводимость)
- •4.5. Схема замещения лэп
- •Глава 5. Параметры схемы замещения трансформаторов
- •5.1. Общие сведения
- •5.2. Двухобмоточный трансформатор
- •5.3 Трехобмоточный трансформатор
- •5.4. Двухобмоточный трансформатор с расщепленной обмоткой низкого напряжения
- •5.5. Автотрансформатор
- •100 % / 100 % / Α %.
- •Глава 6. Характеристики основных электроприемников
- •6.1. Характеристики основных электроприемников
- •6.2. Графики нагрузки электроприемников
- •Глава 7. Потери мощности и электроэнергии в элементах сети
- •7.1. Потери мощности в элементах сети
- •7.2. Расчет потерь мощности в линиях электропередач
- •7.3. Расчет потерь мощности в лэп с равномерно распределенной нагрузкой
- •7.4. Расчет потерь мощности в трансформаторах
- •7.5. Приведенные и расчетные нагрузки потребителей
- •7.6. Расчет потерь электроэнергии
- •Мероприятия по снижению потерь мощности
- •Глава 8. Векторные диаграммы лэп
- •8.1. Векторная диаграмма лэп 35 кВ с одной нагрузкой
- •8.2. Векторная диаграмма лэп 35 кВ с несколькими нагрузками
- •8.3. Векторная диаграмма лэп 110 кВ с одной нагрузкой
- •Глава 9. Расчет режимов электрических сетей
- •9.1. Задача расчета режимов. Основные допущения
- •9.2. Метод расчета режима при заданном напряжении в конце лэп
- •9.3. Последовательность расчета
- •9.4. Расчет режима при заданном напряжении в начале лэп (на источнике питания)
- •9.5. Расчет сетей разных номинальных напряжений
- •Глава 10. Расчет местных сетей (сетей напряжением ) по потере напряжения
- •10.1. Допустимые потери напряжения в линиях местных сетей
- •10.2. Допущения, положенные в основу расчета местных сетей
- •10.3. Определение наибольшей потери напряжения
- •В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ип до конечной точки сети. В разветвленной сети наибольшая потеря напряжения определяется следующим образом:
- •10.4. Частные случаи расчета местных сетей
- •Потеря напряжения в лэп с равномерно распределенной нагрузкой
- •Глава 11. Расчет сечений проводов по допустимой потере напряжения
- •11.1. Общие положения методов
- •11.2. Расчет сечений проводов из условия постоянства сечений на участках
- •11.3. Расчет сечений проводов из условия минимального расхода проводникового материала
- •11.4. Расчет сечений проводов из условия минимума потерь мощности в сети
- •11.5. Этапы расчета при разных условиях
- •11.6. Сравнительная характеристика методов
- •Глава 12. Расчет режимов простых замкнутых сетей
- •12.1. Расчет линий с двухстронним питанием
- •12.2. Частные случаи расчета простых замкнутых сетей
- •Глава 13. Расчет режимов сложнозамкнутых сетей. Методы преобразования сети.
- •13.1. Суть метода преобразования
- •13.2. Прием 1. Замена площади сечения проводов участка сети эквивалентной
- •13.3. Прием 2. Замена параллельных линий при отсутствии на них нагрузок эквивалентной линей
- •13.4. Прием 3. Замена источников напряжения, присоединенных к одной точке сети, одним эквивалентным
- •13.5. Прием 4. Преобразование треугольника сопротивлений в эквивалентную звезду
- •13.6. Прием 5. Перенос нагрузок в другие точки сети
- •Глава 14. Баланс мощностей в энергосистеме
- •Глава 15. Реактивная мощность в энергосистеме. Потребители реактивной мощности. Выработка реактивной мощности генераторами эс
- •15.1. Общие положения
- •15.2. Регулирующий эффект нагрузки
- •15.3. Потребители реактивной мощности
- •15.4. Генерация реактивной мощности генераторами эс
- •Глава 16. Реактивная мощность в энергосистеме. Компенсация реактивной мощности.
- •16.1. Общие положения
- •16.2. Синхронные компенсаторы
- •16.3. Батареи конденсаторов
- •16.4 Поперечная компенсация
- •16.5. Продольная компенсация
- •16.6. Статические источники реактивной мощности
- •Глава 17. Методы регулирования напряжения. Устройства регулирования напряжения
- •17.1. Общие положения
- •17.2. Регулирование напряжения в центрах питания
- •17.3. Метод встречного регулирования
- •17.4. Регулирование напряжения на электростанциях
- •17.5. Регулирование напряжения на понижающих подстанциях
- •17.6. Устройство рпн двухобмоточного трансформатора
- •17.7. Устройство рпн автотрансформатора
- •Глава 18. Методы регулирования напряжения. Устройства регулирования напряжения (продолжение)
- •18.1. Выбор ответвлений двухобмоточного трансформатора
- •18.2. Выбор ответвлений трехобмоточного трансформатора и автотрансформатора
- •Глава 19. Методы регулирования напряжения. Устройства регулирования напряжения (продолжение)
- •19.1. Регулирование напряжения при помощи линейных регуляторов
- •19.2. Регулирование напряжения при помощи устройств продольной компенсации
- •19.3. Регулирование напряжения при помощи устройств поперечной компенсации
- •Глава 20. Экономичность режимов электрических систем
- •20.1. Общие сведения
- •20.2. Оптимальное распределение активной мощности между тепловыми электростанциями
- •20.3. Оптимальное распределение мощности в замкнутых сетях
- •20.4. Принудительное перераспределение мощности
- •20.5. Настройка сети
- •20.5. Размыкание пути протекания уравнительного тока, то есть размыкание контуров сети
- •20.6. Экономичный режим работы трансформаторов
4.2. Индуктивное сопротивление
Переменный ток, проходя по проводу, образует вокруг него переменное магнитное поле, которое наводит в проводнике ЭДС обратного направления (ЭДС самоиндукции). Сопротивление току, обусловленное противодействием ЭДС самоиндукции, называется реактивным индуктивным сопротивлением.
Величина реактивного индуктивного сопротивления зависит как от значения тока в собственном проводе, так и от величины токов в соседних проводах. Чем дальше расположены фазные провода линии, тем меньше влияние соседних проводов – поток рассеяния и индуктивное сопротивление увеличиваются.
На величину индуктивного сопротивления оказывает влияние диаметр провода, магнитная проницаемость () и частота переменного тока. Величина погонного индуктивного сопротивления рассчитывается по формуле:
(4.1)
где
– угловая частота;
–магнитная
проницаемость;
−среднегеометрическое
расстояние между фазами ЛЭП;
−радиус
провода.
Погонное
индуктивное сопротивление состоит из
двух составляющих
и
.
Величина
называется внешним индуктивным
сопротивлением. Обусловлено внешним
магнитным полем и зависит только от
геометрических размеров ЛЭП. Величина
называется внутренним индуктивным
сопротивлением. Обусловлено внутренним
магнитным полем и зависит только от,
то есть от тока проходящего по проводнику.
Среднегеометрическое расстояние между фазными проводами рассчитывается по формуле:
На рис. 4.3 показано возможное расположение проводов на опоре.
При
расположении проводов в одной плоскости
(рис. 4.3 а, б) формула для расчета
упрощается:
Если
же провода расположены в вершинах
равностороннего треугольника, то
.
Для ВЛЭП напряжением 6−10 кВ расстояние между проводами составляет 1−1,5 м; напряжением 35 кВ – 2−4 м; напряжением 110 кВ – 4−7 м; напряжением 220 кВ – 7−9 м.
|
Рисунок 4.3 – Расположение проводов на опоре: а), б) – в одной плоскости; в) – в вершинах треугольника |
При f = 50 Гц значение =2f = 3,14 1/с. Тогда формула (4.1) записывается следующим образом:
Для
проводников выполненных из цветного
металла (медь, алюминий)
.
На ЛЭП высокого напряжения (330 кВ и выше) применяют расщепление фазы на несколько проводов. На напряжении 330 кВ обычно используют 2 провода в фазе (индуктивное сопротивление снижается приблизительно на 19 %). На напряжении 500 кВ обычно используют 3 провода в фазе (индуктивное сопротивление снижается приблизительно на 28 %). На напряжении 750 кВ используют 4−6 проводов в фазе (индуктивное сопротивление снижается приблизительно на 33 %).
Величина погонного индуктивного сопротивления при расщепленной конструкции фазы рассчитывается как:
где n – количество проводов в фазе;
–эквивалентный
радиус провода.
При n = 2, 3 получим:
где а – шаг расщепления (среднегеометрическое расстояние между проводами в фазе);
–радиус
провода.
При большем количестве проводов в фазе их располагают по окружности (см. рис. 4.4). В этом случае величина эквивалентного радиуса провода равна:
где p – радиус расщепления.
|
Рисунок 4.4 – Расположение проводов в фазе при n ≥4 |
Величина погонного индуктивного сопротивления зависит от радиуса провода, и практически не зависит от сечения (рис. 4.5).
|
Рисунок 4.5 – Зависимость погонных активного и реактивного сопротивлений от сечения проводника |
Величина
уменьшается при увеличении радиуса
провода. Чем меньше средний диаметр
провода, тем больше
,
так как в меньшей степени влияют соседние
провода, уменьшается ЭДС самоиндукции.
Влияние второй цепи для двухцепных ЛЭП
проявляется мало, поэтому им пренебрегают.
Индуктивное сопротивление кабеля намного меньше чем у воздушных ЛЭП из-за меньших расстояний между фазами. В ряде случаев им можно пренебречь. Сравним погонное индуктивное сопротивление кабельных и воздушных линий разных напряжений:
Номинальное напряжение, кВ |
КЛЭП |
ВЛЭП |
6 |
0,06 |
0,31 |
35 |
0,125 |
0,4 |
Величина реактивного сопротивления участка сети рассчитывается:
.