
- •Оглавление
- •Глава 1. Введение в электроэнергетику. Цели и задачи курса. Основные понятия. Номинальные напряжения
- •Физическая природа электричества
- •Свойства электроэнергии
- •Цель и задачи курса
- •Электрическая сеть, как часть электрической системы
- •Номинальные напряжения
- •Область использования номинальных напряжений
- •Глава 2. Классификация электрических сетей
- •Глава 3. Основные сведения о конструкциях линий электропередач
- •3.1. Воздушные линии электропередас (влэп)
- •3.2. Кабельные линии электропередач (клэп)
- •Глава 4. Схемы замещения и параметры элементов электрических сетей
- •4.1. Активное сопротивление
- •4.2. Индуктивное сопротивление
- •4.3. Активная проводимость
- •4.4. Реактивная (емкостная проводимость)
- •4.5. Схема замещения лэп
- •Глава 5. Параметры схемы замещения трансформаторов
- •5.1. Общие сведения
- •5.2. Двухобмоточный трансформатор
- •5.3 Трехобмоточный трансформатор
- •5.4. Двухобмоточный трансформатор с расщепленной обмоткой низкого напряжения
- •5.5. Автотрансформатор
- •100 % / 100 % / Α %.
- •Глава 6. Характеристики основных электроприемников
- •6.1. Характеристики основных электроприемников
- •6.2. Графики нагрузки электроприемников
- •Глава 7. Потери мощности и электроэнергии в элементах сети
- •7.1. Потери мощности в элементах сети
- •7.2. Расчет потерь мощности в линиях электропередач
- •7.3. Расчет потерь мощности в лэп с равномерно распределенной нагрузкой
- •7.4. Расчет потерь мощности в трансформаторах
- •7.5. Приведенные и расчетные нагрузки потребителей
- •7.6. Расчет потерь электроэнергии
- •Мероприятия по снижению потерь мощности
- •Глава 8. Векторные диаграммы лэп
- •8.1. Векторная диаграмма лэп 35 кВ с одной нагрузкой
- •8.2. Векторная диаграмма лэп 35 кВ с несколькими нагрузками
- •8.3. Векторная диаграмма лэп 110 кВ с одной нагрузкой
- •Глава 9. Расчет режимов электрических сетей
- •9.1. Задача расчета режимов. Основные допущения
- •9.2. Метод расчета режима при заданном напряжении в конце лэп
- •9.3. Последовательность расчета
- •9.4. Расчет режима при заданном напряжении в начале лэп (на источнике питания)
- •9.5. Расчет сетей разных номинальных напряжений
- •Глава 10. Расчет местных сетей (сетей напряжением ) по потере напряжения
- •10.1. Допустимые потери напряжения в линиях местных сетей
- •10.2. Допущения, положенные в основу расчета местных сетей
- •10.3. Определение наибольшей потери напряжения
- •В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ип до конечной точки сети. В разветвленной сети наибольшая потеря напряжения определяется следующим образом:
- •10.4. Частные случаи расчета местных сетей
- •Потеря напряжения в лэп с равномерно распределенной нагрузкой
- •Глава 11. Расчет сечений проводов по допустимой потере напряжения
- •11.1. Общие положения методов
- •11.2. Расчет сечений проводов из условия постоянства сечений на участках
- •11.3. Расчет сечений проводов из условия минимального расхода проводникового материала
- •11.4. Расчет сечений проводов из условия минимума потерь мощности в сети
- •11.5. Этапы расчета при разных условиях
- •11.6. Сравнительная характеристика методов
- •Глава 12. Расчет режимов простых замкнутых сетей
- •12.1. Расчет линий с двухстронним питанием
- •12.2. Частные случаи расчета простых замкнутых сетей
- •Глава 13. Расчет режимов сложнозамкнутых сетей. Методы преобразования сети.
- •13.1. Суть метода преобразования
- •13.2. Прием 1. Замена площади сечения проводов участка сети эквивалентной
- •13.3. Прием 2. Замена параллельных линий при отсутствии на них нагрузок эквивалентной линей
- •13.4. Прием 3. Замена источников напряжения, присоединенных к одной точке сети, одним эквивалентным
- •13.5. Прием 4. Преобразование треугольника сопротивлений в эквивалентную звезду
- •13.6. Прием 5. Перенос нагрузок в другие точки сети
- •Глава 14. Баланс мощностей в энергосистеме
- •Глава 15. Реактивная мощность в энергосистеме. Потребители реактивной мощности. Выработка реактивной мощности генераторами эс
- •15.1. Общие положения
- •15.2. Регулирующий эффект нагрузки
- •15.3. Потребители реактивной мощности
- •15.4. Генерация реактивной мощности генераторами эс
- •Глава 16. Реактивная мощность в энергосистеме. Компенсация реактивной мощности.
- •16.1. Общие положения
- •16.2. Синхронные компенсаторы
- •16.3. Батареи конденсаторов
- •16.4 Поперечная компенсация
- •16.5. Продольная компенсация
- •16.6. Статические источники реактивной мощности
- •Глава 17. Методы регулирования напряжения. Устройства регулирования напряжения
- •17.1. Общие положения
- •17.2. Регулирование напряжения в центрах питания
- •17.3. Метод встречного регулирования
- •17.4. Регулирование напряжения на электростанциях
- •17.5. Регулирование напряжения на понижающих подстанциях
- •17.6. Устройство рпн двухобмоточного трансформатора
- •17.7. Устройство рпн автотрансформатора
- •Глава 18. Методы регулирования напряжения. Устройства регулирования напряжения (продолжение)
- •18.1. Выбор ответвлений двухобмоточного трансформатора
- •18.2. Выбор ответвлений трехобмоточного трансформатора и автотрансформатора
- •Глава 19. Методы регулирования напряжения. Устройства регулирования напряжения (продолжение)
- •19.1. Регулирование напряжения при помощи линейных регуляторов
- •19.2. Регулирование напряжения при помощи устройств продольной компенсации
- •19.3. Регулирование напряжения при помощи устройств поперечной компенсации
- •Глава 20. Экономичность режимов электрических систем
- •20.1. Общие сведения
- •20.2. Оптимальное распределение активной мощности между тепловыми электростанциями
- •20.3. Оптимальное распределение мощности в замкнутых сетях
- •20.4. Принудительное перераспределение мощности
- •20.5. Настройка сети
- •20.5. Размыкание пути протекания уравнительного тока, то есть размыкание контуров сети
- •20.6. Экономичный режим работы трансформаторов
Глава 1. Введение в электроэнергетику. Цели и задачи курса. Основные понятия. Номинальные напряжения
Физическая природа электричества
Физическая природа электричества может рассматриваться в двух аспектах:
корпускулярном (молекулярном), т.е. в виде потока электронов;
в волновом, т.е. в виде электромагнитного поля, которое имеет различные проявления в электроэнергетике.
При молекулярном аспекте за единицу энергии принимают 1 МэВ, при волновом – 1 кВт·ч. Их соотношение таково:
Соотношение этих величин подчеркивает, что энергетические задачи должны рассматриваться не в молекулярном, а в волновом аспекте.
Передача электроэнергии также рассматривается в волновом аспекте. Линия электропередач не транспортирует электричество, как каналы транспортируют воду, а служит волноводом, который заставляет энергию следовать по определенному пути. Такой волновод является наиболее простым средством передачи энергии при волнах малой длины.
Свойства электроэнергии
Огромная роль, которую играет электроэнергия в нашей жизни обусловлена следующими ее свойствами:
легкость передачи на большие расстояния по сравнению с другими видами энергии;
возможность преобразований в другие виды энергий с высоким к.п.д. независимо от ее количества, поэтому нет необходимости в ее хранении;
электроэнергия проявляется в виде потока, который раздробить на части легче, чем другие энергетические потоки (уголь, нефтепродукты);
потребление электроэнергии может плавно меняться от нуля до максимума в зависимости от хода самого процесса производства или нагрузки рабочего механизма;
возможность значительной концентрации мощности при производстве электроэнергии;
поток электроэнергии можно представить непрерывным или периодическим в виде синусоиды. Такое представление наиболее удобно для информационных потоков. Поэтому линии электропередач (ЛЭП) часто используются и для передачи информации;
электроэнергия является наиболее чистым видом энергии и в наимешьшей степени загрязняет окружающую среду;
ориентация на использование трехфазного тока придала использованию электроэнергии однородность.
Цель и задачи курса
Цель изучения дисциплины заключается в формировании знаний в области теории расчетов и анализа установившихся режимов электрических систем и сетей и управления ими, а также в области их проектирования.
К основным задачам относятся:
ознакомление с физической сущностью явлений, которые сопровождают процесс производства, распределения и потребления электроэнергии;
составление схем замещения отдельных элементов сети и участка электрической сети в целом;
определение их параметров;
расчет и анализ различных режимов электрических сетей и систем;
разработка рекомендаций по улучшению режимов.
Курс основывается на дисциплинах “Математика”, “Физика”, “Технология производства электроэнергии”, “Теоретические основы электротехники”. Курс предваряет дисциплины “Электрооборудование станций и подстанций”, “Релейная защита”, “Переходные процессы в элетрических системах”.
Электрическая сеть, как часть электрической системы
По технико-экономическим соображениям все электростанции, которые расположены в одном регионе, соединяются между собой для параллельной работы на общую нагрузку при помощи ЛЭП различного класса напряжения. Объединение отличается общностью режима и непрерывностью процесса производства, распределения и потребления тепловой и электрической энергий и называется энергетической системой. Другими словами, энергетическая система – это совокупность всех звеньев цепочки получения, преобразования, распределения и использования тепловой и электрической энергии. Схематично энергетическая система представлена на рис. 1.1.
|
Рисунок 1.1 – Условное обозначение энергетической и электрической систем |
Электрическая или электроэнергетическая система представляет собой часть энергетической системы. Из нее исключаются тепловые сети и тепловые потребители.
Электрическая система является сложным объектом. Сложность обусловлена рядом специфических особенностей:
постоянное совпадение по времени процесса выработки, передачи и потребления электроэнергии;
непрерывность процесса выработки, передачи и потребления электроэнергии и необходимость в связи с этим непрерывного контроля за этим процессом. Процесс передачи электроэнергии по цепи “генератор – электроприемник” возможен лишь при надежной электрической и магнитной связи на всем протяжении этой цепи;
повышенная опасность электрического тока для окружающей среды и обслуживающего персонала;
быстрое протекание процессов, связанных с отказом различных элементов основной технологической цепочки;
многообразие функциональных систем и устройств, которые осуществляют технологию производства электроэнергии, управление, регулирование и контроль. Необходимость их постоянного и четкого взаимодействия;
удаленность энергетических объектов друг от друга;
зависимость режимов работы электрических систем от различных случайных факторов (погодные условия, режим работы энергосистемы, потребителей);
значительный объем работ по ремонтно-эксплуатационному обслуживанию большого количества разнотипного оборудования.
На электрических схемах элетрическая система представляется следующим образом (см. рис. 1.2).
-
Рисунок 1.2 – Обозначение электрической системы на электрических схемах
Электрическая сеть – это совокупность электроустановок для распределения электрической энергии. Она состоит из подстанций, распределительных устройств, воздушных и кабельных линий электропередач.
Линия электропередач – это электроустановка, предназначенная для передачи электроэнергии.
Так как передача электроэнергии экономически выгодна только по ЛЭП высокого напряжения, то энергия, которая вырабатывается на электростанции (ЭС), преобразуется в энергию высокого напряжения при помощи трансформаторов ЭС. Подстанции, на которых производится эта трансформация называются повышающими (питающими). На другом конце электропередачи строится понизительная (приемная) подстанция. Второе название условное, т.к. понизительная подстанция может быть одновременно и питающей.
Электроустановки, прием и распределение электроэнергии в которых выполняются на одном уровне напряжения, т.е. без трансформации, называются распределительными или переключательными пунктами.
Энергосистемы, расположенные в различных экономических районах, связываются между собой линиями электропередач высокого напряжения. Это обеспечивает взаимный обмен мощностями и дает следующие преимущества:
снижение суммарного максимума;
уменьшение суммарного резерва мощности (12–20 % от суммарной мощности);
повышается надежность и качество энергоснабжения;
повышается экономичность использования энергоресурсов;
улучшается использование мощности ЭС (можно строить мощные агрегаты);
облегчается работа систем при сезонных изменениях нагрузки, при ремонтах и авариях.
Однако, в объединенных системах усложняется релейная защита, автоматика и управление режимами.