
- •Оглавление
- •Глава 1. Введение в электроэнергетику. Цели и задачи курса. Основные понятия. Номинальные напряжения
- •Физическая природа электричества
- •Свойства электроэнергии
- •Цель и задачи курса
- •Электрическая сеть, как часть электрической системы
- •Номинальные напряжения
- •Область использования номинальных напряжений
- •Глава 2. Классификация электрических сетей
- •Глава 3. Основные сведения о конструкциях линий электропередач
- •3.1. Воздушные линии электропередас (влэп)
- •3.2. Кабельные линии электропередач (клэп)
- •Глава 4. Схемы замещения и параметры элементов электрических сетей
- •4.1. Активное сопротивление
- •4.2. Индуктивное сопротивление
- •4.3. Активная проводимость
- •4.4. Реактивная (емкостная проводимость)
- •4.5. Схема замещения лэп
- •Глава 5. Параметры схемы замещения трансформаторов
- •5.1. Общие сведения
- •5.2. Двухобмоточный трансформатор
- •5.3 Трехобмоточный трансформатор
- •5.4. Двухобмоточный трансформатор с расщепленной обмоткой низкого напряжения
- •5.5. Автотрансформатор
- •100 % / 100 % / Α %.
- •Глава 6. Характеристики основных электроприемников
- •6.1. Характеристики основных электроприемников
- •6.2. Графики нагрузки электроприемников
- •Глава 7. Потери мощности и электроэнергии в элементах сети
- •7.1. Потери мощности в элементах сети
- •7.2. Расчет потерь мощности в линиях электропередач
- •7.3. Расчет потерь мощности в лэп с равномерно распределенной нагрузкой
- •7.4. Расчет потерь мощности в трансформаторах
- •7.5. Приведенные и расчетные нагрузки потребителей
- •7.6. Расчет потерь электроэнергии
- •Мероприятия по снижению потерь мощности
- •Глава 8. Векторные диаграммы лэп
- •8.1. Векторная диаграмма лэп 35 кВ с одной нагрузкой
- •8.2. Векторная диаграмма лэп 35 кВ с несколькими нагрузками
- •8.3. Векторная диаграмма лэп 110 кВ с одной нагрузкой
- •Глава 9. Расчет режимов электрических сетей
- •9.1. Задача расчета режимов. Основные допущения
- •9.2. Метод расчета режима при заданном напряжении в конце лэп
- •9.3. Последовательность расчета
- •9.4. Расчет режима при заданном напряжении в начале лэп (на источнике питания)
- •9.5. Расчет сетей разных номинальных напряжений
- •Глава 10. Расчет местных сетей (сетей напряжением ) по потере напряжения
- •10.1. Допустимые потери напряжения в линиях местных сетей
- •10.2. Допущения, положенные в основу расчета местных сетей
- •10.3. Определение наибольшей потери напряжения
- •В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ип до конечной точки сети. В разветвленной сети наибольшая потеря напряжения определяется следующим образом:
- •10.4. Частные случаи расчета местных сетей
- •Потеря напряжения в лэп с равномерно распределенной нагрузкой
- •Глава 11. Расчет сечений проводов по допустимой потере напряжения
- •11.1. Общие положения методов
- •11.2. Расчет сечений проводов из условия постоянства сечений на участках
- •11.3. Расчет сечений проводов из условия минимального расхода проводникового материала
- •11.4. Расчет сечений проводов из условия минимума потерь мощности в сети
- •11.5. Этапы расчета при разных условиях
- •11.6. Сравнительная характеристика методов
- •Глава 12. Расчет режимов простых замкнутых сетей
- •12.1. Расчет линий с двухстронним питанием
- •12.2. Частные случаи расчета простых замкнутых сетей
- •Глава 13. Расчет режимов сложнозамкнутых сетей. Методы преобразования сети.
- •13.1. Суть метода преобразования
- •13.2. Прием 1. Замена площади сечения проводов участка сети эквивалентной
- •13.3. Прием 2. Замена параллельных линий при отсутствии на них нагрузок эквивалентной линей
- •13.4. Прием 3. Замена источников напряжения, присоединенных к одной точке сети, одним эквивалентным
- •13.5. Прием 4. Преобразование треугольника сопротивлений в эквивалентную звезду
- •13.6. Прием 5. Перенос нагрузок в другие точки сети
- •Глава 14. Баланс мощностей в энергосистеме
- •Глава 15. Реактивная мощность в энергосистеме. Потребители реактивной мощности. Выработка реактивной мощности генераторами эс
- •15.1. Общие положения
- •15.2. Регулирующий эффект нагрузки
- •15.3. Потребители реактивной мощности
- •15.4. Генерация реактивной мощности генераторами эс
- •Глава 16. Реактивная мощность в энергосистеме. Компенсация реактивной мощности.
- •16.1. Общие положения
- •16.2. Синхронные компенсаторы
- •16.3. Батареи конденсаторов
- •16.4 Поперечная компенсация
- •16.5. Продольная компенсация
- •16.6. Статические источники реактивной мощности
- •Глава 17. Методы регулирования напряжения. Устройства регулирования напряжения
- •17.1. Общие положения
- •17.2. Регулирование напряжения в центрах питания
- •17.3. Метод встречного регулирования
- •17.4. Регулирование напряжения на электростанциях
- •17.5. Регулирование напряжения на понижающих подстанциях
- •17.6. Устройство рпн двухобмоточного трансформатора
- •17.7. Устройство рпн автотрансформатора
- •Глава 18. Методы регулирования напряжения. Устройства регулирования напряжения (продолжение)
- •18.1. Выбор ответвлений двухобмоточного трансформатора
- •18.2. Выбор ответвлений трехобмоточного трансформатора и автотрансформатора
- •Глава 19. Методы регулирования напряжения. Устройства регулирования напряжения (продолжение)
- •19.1. Регулирование напряжения при помощи линейных регуляторов
- •19.2. Регулирование напряжения при помощи устройств продольной компенсации
- •19.3. Регулирование напряжения при помощи устройств поперечной компенсации
- •Глава 20. Экономичность режимов электрических систем
- •20.1. Общие сведения
- •20.2. Оптимальное распределение активной мощности между тепловыми электростанциями
- •20.3. Оптимальное распределение мощности в замкнутых сетях
- •20.4. Принудительное перераспределение мощности
- •20.5. Настройка сети
- •20.5. Размыкание пути протекания уравнительного тока, то есть размыкание контуров сети
- •20.6. Экономичный режим работы трансформаторов
4.4. Реактивная (емкостная проводимость)
Реактивная проводимость обусловлена наличием емкости между фазами и между фазами и землей, так как любую пару проводов можно рассматривать как конденсатор.
Для ВЛЭП величина погонной реактивной проводимости рассчитывается по формулам:
для нерасщепленных проводов:
,
См/км;
для расщепленных проводов:
Расщепление
увеличивает
на 21
33 %.
Для КЛЭП величина погонной проводимости чаще рассчитывается по формуле:
.
Величина емкости C0 приводится в справочной литературе для различных марок кабеля.
Реактивная проводимость участка сети рассчитывается по формуле:
.
У
воздушных ЛЭП значение b0
значительно меньше, чем у кабельных
ЛЭП, мало, так как
.
Под действием напряжения в проводимостях протекает емкостный ток (ток смещения или зарядный ток):
.
Величина этого тока определяет потери реактивной мощности в реактивной проводимости или зарядную мощность ЛЭП:
В районных сетях зарядные токи соизмеримы с рабочими токами. При Uном = 110 кВ, величина Qс составляет около 10 % от передаваемой активной мощности, при Uном = 220 кВ – Qс ≈ 30 % Р. Поэтому ее нужно учитывать в расчетах. В сети номинальным напряжением до 35 кВ величиной Qс можно пренебречь.
4.5. Схема замещения лэп
Итак, ЛЭП характеризуется активным сопротивлением Rл, реактивным сопротивлением линии хл, активной проводимостью Gл, реактивной проводимостью Вл. В расчетах ЛЭП может быть представлена симметричными П- и Т- образными схемами (рис. 4.6).
|
Рисунок 4.6 – Схемы замещения ЛЭП: а) − П-образная; б) − Т-образная |
П – образная схема применяется чаще.
В зависимости от класса напряжения теми или иными параметрами полной схемы замещения можно пренебречь (см. рис. 4.7):
ВЛЭП напряжением до 220 кВ (Ркор 0);
ВЛЭП напряжением до 35 кВ (Ркор 0, Qc 0);
КЛЭП напряжением 35 кВ (реактивное сопротивление 0)
КЛЭП напряжением 20 кВ (реактивное сопротивление 0, диэлектрические потери 0);
КЛЭП напряжением до 10 кВ (реактивное сопротивление 0, диэлектрические потери 0, Qc 0).
|
Рисунок 4.7 – Упрощенные схемы замещения ЛЭП: а) − ВЛЭП при Uном до 220 кВ; б) − ВЛЭП при Uном до 35 кВ; в) − КЛЭП при Uном 35 кВ; г) − КЛЭП при Uном 20 кВ; д) − КЛЭП при Uном 6-10 кВ |
Глава 5. Параметры схемы замещения трансформаторов
5.1. Общие сведения
На электростанциях и подстанциях устанавливаются трехфазные и однофазные, двухобмоточные и трехобмоточные силовые трансформаторы и автотрансформаторы, и силовые однофазные и трехфазные трансформаторы с расщепленной обмоткой низшего напряжения.
В аббревиатуре трансформатора последовательно (слева направо) приводится следующая информация:
вид устройства (А – автотрансформатор, без обозначения – трансфор-матор);
количество фаз (О – однофазный, Т –трехфазный);
наличие расщепленной обмотки низшего напряжения – Р;
система охлаждения (М – естественная циркуляция масла и воздуха, Д – принудительная циркуляция воздуха и естественная циркуляция масла, МЦ – естественная циркуляция воздуха и принудительная циркуляция масла, ДЦ – принудительная циркуляция воздуха и масла и др);
количество обмоток (без обозначения – двухобмоточный, Т – трехобмо-точный);
наличие устройства регулирования напряжения под нагрузкой (РПН);
исполнение (З – защитное, Г – грозоупорное, У – усовершенствованное, Л – с литой изоляцией);
специфическая область применения (С – для систем собственных нужд электростанций, Ж – для электрификации железных дорог);
номинальная мощность в кВ∙А,
класс напряжения обмоток (напряжения сети, к которой подключается трансформатор) в кВ.