
- •Александр Ивин Логика. Учебное пособие Издание 2-е Глава 1 Кто мыслит логично
- •1. Интуитивная логика
- •Принудительная сила речи
- •Мнимая убедительность
- •Слабость интуитивной логики
- •2. Задачи логики
- •Из истории логики
- •Правильное рассуждение
- •Логика и творчество
- •Литература
- •Формулировка закона противоречия
- •Мнимые противоречия
- •Неявные противоречия
- •Многообразные задачи противоречия
- •2. Закон исключенного третьего
- •Некоторые применения закона
- •Сомнения в универсальности закона
- •Критика закона Брауэром
- •3. Еще законы
- •Закон тождества
- •Закон контрапозиции
- •Законы де Моргана
- •Модус поненс и модус толленс
- •Утверждающе-отрицающий и отрицающе-утверждающий модусы
- •Конструктивная и деструктивная дилеммы
- •Закон Клавия
- •4. О так называемых законах логики
- •Трактовка логических законов в традиционной логике
- •Законы логики как элементы логической системы
- •5. Логические тавтологии
- •Ошибочные истолкования логических тавтологий
- •Литература
- •Из истории неклассической логики
- •2. Интуиционистская и многозначная логика
- •Основные идеи интуиционизма
- •Многозначная логика
- •3. Модальная логика
- •Модальные понятия
- •Абсолютные и сравнительные модальности
- •Единство модальной логики
- •4. Логика оценок и логика норм
- •Возможность научной этики
- •Законы логики оценок
- •Законы логики норм
- •5. Другие разделы неклассической логики
- •Логика квантовой механики
- •Паранепротиворечивая логика
- •Логика причинности
- •Логика изменения
- •Единство логики
- •Литература
- •Контрольные вопросы
- •Темы рефератов и докладов
- •Глава 4 Искусство определения
- •1. Определение и его глубина
- •Задачи определения
- •2. Неявные определения
- •Контекстуальные определения
- •Остенсивные определения
- •Аксиоматические определения
- •3. Явные определения
- •Требования к явному определению
- •4. Реальные и номинальные определения
- •Определения-описания и определения-требования
- •5. Споры об определениях
- •Границы эффективных определений
- •Ясность системы понятий
- •Литература
- •Пример сумбурной классификации
- •Деление понятий
- •Требования к делению
- •2. Основание деления
- •Характерная ошибка
- •Дихотомическое деление
- •3. Естественная классификация
- •Естественная и искусственная классификация
- •Человек как объект классификации
- •Еще примеры классификации
- •Ловушки классификации
- •Литература
- •Определения дедукции и индукции
- •Обычные дедукции
- •Дедуктивная аргументация
- •Понятие доказательства
- •2. Разновидности индукции
- •Неполная индукция
- •«Перевернутые законы логики»
- •Косвенное подтверждение
- •Целевое обоснование
- •Факты как примеры
- •Факты как иллюстрации
- •Образцы и оценки
- •3. Аналогия
- •Свернутые аналогии
- •Аналогия свойств и аналогия отношений
- •Аналогия как сходство несходного
- •Вероятность выводов по аналогии
- •Аналогия в искусстве
- •Аналогия в науке и технике
- •Аналогия в историческом исследовании
- •Характерные ошибки
- •Гадания и прорицания как аналогии
- •Литература
- •Контрольные вопросы
- •Темы рефератов и докладов
- •Глава 7 Софизмы
- •1. Софизм – интеллектуальное мошенничество?
- •Софизм как умышленный обман
- •Недостатки стандартного истолкования софизмов
- •2. Апории Зенона
- •«Ахиллес и черепаха», «Дихотомия»
- •Апория «Медимн зерна»
- •«Неопредмеченное знание»
- •Софизмы и развитие знания
- •3. Софизмы и зарождение логики
- •Софизмы и логический анализ языка
- •Софизмы и противоречивое мышление
- •Софизмы как особая форма постановки проблем
- •Литература
- •Парадоксы и логика
- •Варианты парадокса «Лжеца»
- •Язык и метаязык
- •Другие решения парадокса
- •2. Парадокс Рассела
- •Множество обычных множеств
- •Другие варианты парадокса
- •3. Парадоксы Греллинга и Берри
- •Аутологические и гетерологические слова
- •4. Неразрешимый спор
- •Решения парадокса «Протагор и Еватл»
- •Правила, заводящие в тупик
- •Парадокс «Крокодил и мать»
- •Парадокс Санчо Пансы
- •5. Другие парадоксы
- •Парадоксы неточных понятий
- •Парадоксы индуктивной логики
- •6. Что такое логический парадокс
- •Своеобразие логических парадоксов
- •Парадоксы и современная логика
- •Устранение и объяснение парадоксов
- •Логическая грамматика
- •Будущее парадоксов
- •7. Несколько парадоксов, или то, что похоже на них
- •Литература
- •Контрольные вопросы
- •Темы рефератов и докладов
- •Вместо заключения
- •Оглавление
Логика причинности
Понятие причинности является одним из центральных как в науке, так и в философии науки. Причинная связь не является логическим отношением. Но то, что причинность не сводима к логике, не означает что проблема при-чинности не имеет никакого логического содержания и не может анализироваться с помощью логики. Задача логического исследования причинности заключается в систематизации тех правильных схем рассуждений, посылками или заключениями которых служат каузальные высказывания. В этом плане логика причинности ничем не отличается, скажем, от логики времени или логики знания, целью которых является построение искусственных языков, позволяющих с большей ясностью и эффективностью рассуждать о времени или знании.
В логике причинности связь причины и следствия представляется особым условным высказыванием – каузальной импликацией. Последняя иногда принимается в качестве исходного, не определяемого явным образом понятия. Смысл ее задается множеством аксиом. Чаще, однако, такая импликация определяется через другие, более ясные или более фундаментальные понятия. В их числе понятие онтологической (каузальной, или фактической) необходимости, понятие вероятности и др.
Логическая необходимость присуща законам логики, онтологическая необходимость характеризует закономерности природы и, в частности, причинные связи. Выражение «А есть причина В» («А каузально имплицирует В») можно определить как «Онтологически необходимо, что если А, то В», отличая тем самым простую условную связь от каузальной импликации.
Через вероятность причинная связь определяется так: событие А есть причина события В, только если вероятность события А больше нуля, оно происходит раньше В и вероятность наступления В при наличии А выше, чем просто вероятность В.
Понятие причинной связи определяется с помощью понятия закона природы: А каузально влечет В, только если из А не вытекает логически В, но из А, взятого вместе с множеством законов природы, логически следует В. Смысл этого определения прост: причинная связь не является логической, следствие вытекает из причины не в силу законов логики, а на основании законов природы.
Для причинной связи верны, в частности, утверждения:
– ничто не является причиной самого себя;
– если одно событие является причиной второго, то второе не является причиной первого;
– одно и то же событие не может быть одновременно как причиной наличия какого-то события, так и причиной его отсутствия;
– нет причины для наступления противоречивого события, и т.п.
Слово «причина» употребляется в нескольких смыслах, различающихся по своей силе. Наиболее сильный смысл причинности предполагает, что имеющее причину не может не быть, то есть не может быть ни отменено, ни изменено никакими событиями или действиями. Наряду с этим понятием полной, или необходимой, причины, существует также более слабое понятие частичной, или неполной, причины. Для полной причины выполняется условие: «Если событие А каузально имплицирует событие В, то А вместе с любым событием С также каузально имплицирует В». Для неполной причины верно, что в случае всяких событий А и В, если А есть частичная причина В, то существует такое событие С, что А вместе с С является полной причиной В, и вместе с тем неверно, что А без С есть полная причина В. Иначе говоря, полная причина всегда, или в любых условиях, вызывает свое следствие, в то время как частичная причина только способствует наступлению своего следствия, и это следствие реализуется лишь в случае объединения частичной причины с иными условиями.
Логика причинности строится так, чтобы в ее рамках могло быть получено описание и полных, и неполных причин. Эта логика находит приложения при обсуждении понятий закона природы, онтологической необходимости, детерминизма и др.