
- •Содержание
- •Введение
- •Обоснование системы теплоснабжения
- •2 Расчёт тепловых нагрузок
- •2.1 Определение расчетных тепловых нагрузок
- •2.2 Построение графика зависимости тепловой нагрузки от температуры наружного воздуха
- •2.3 Построение графика годового потребления теплоты
- •3 Выбор метода регулирования системы теплоснабжения
- •3.1 Обозначение величин
- •3.2 Расчет температур воды в отопительных системах с зависимым присоединением
- •3.3 Расчет регулирования отпуска теплоты на горячее водоснабжение
- •3.4 Расчет регулирования отпуска теплоты на вентиляцию
- •3.5 Средневзвешенная температура возвращаемого теплоносителя
- •3.6 Расчет расхода воды из тепловой сети
- •4 Гидравлический расчёт тепловой сети
- •4.1 Расчет участков тепловой сети
- •4.2 Построение пьезометрического графика тепловой сети
- •5 Тепловой расчёт тепловой сети
- •5.1 Расчёт изоляции
- •5.2 Расчёт тепловых потерь
- •6 Расчёт тепловой схемы источника теплоснабжения
- •6.1 Расчет тепловой схемы котельной
- •7 Выбор основного и вспомогательного оборудования
- •Сетевые насосы
- •Подпиточные насосы
- •7.3.3 Питательные насосы
- •7.3.4 Подкачивающие насосы
- •8 Поверочный расчет подогревателей сетевой воды
- •8.1 Тепловой расчет паро-водяного подогревателя
- •8.2 Расчёт охладителя конденсата
- •9 Разработка автоматизации котла де-25-14
- •9.1 Техническая характеристика и описание объекта автоматизации
- •9.2 Описание схемы автоматизации парового котла де-25-14
- •9.3 Теплотехнический контроль
- •9.4 Автоматическое регулирование
- •9.5 Дистанционное управление
- •9.6 Техническая сигнализация и защита
- •10 Реконструкция котельной в мини-тэц
- •10.1Перспективы внедрения когенерации
- •10.2 Оборудование
- •11 Экономическая эффективность реконструкции котельной в мини тэц
- •11.1 Базовый режим
- •11.2 Расчет себестоимости отпущенной тепловой энергии
- •11.3 Установка турбоагрегата тг 0,5а/0,4 р13/3,7
- •11.4 Установка турбоагрегата пвм-1000
- •12 Безопасность и экологичность проекта
- •12.1 Безопасность труда в котельной
- •12.1.1 Анализ опасных и вредных факторов при обслуживании теплового оборудования котельной
- •12.1.2 Разработка инженерных мероприятий по предотвращению воздействия опасных факторов
- •12.1.2.1 Обеспечение пожаро - и взрывобезопасности
- •12.1.2.2 Защита от термических ожогов
- •12.1.2.3 Профилактика механических травм
- •12.1.2.4 Обеспечение электробезопасности
- •12.1.3 Защита от шума и вибрации
- •12.1.4 Формирование микроклимата
- •12.1.5 Освещение котельной
- •12.2 Охрана окружающей среды
- •12.2.1 Определение объемов продуктов сгорания
- •12.2.2 Определение выбросов окислов серы и оксида азота
- •12.2.3 Определение минимальной высоты дымовой трубы
- •12.2.4 Расчет рассеивания приземных концентраций вредных выбросов. Построение кривой рассеивания
- •Список литературы
3 Выбор метода регулирования системы теплоснабжения
Прежде чем проводить дальнейшие расчёты, необходимо определиться с рядом параметров проектируемой тепловой сети, таких как: метод регулирования тепловой нагрузки, схема присоединения абонентов, тип системы теплоснабжения и прочие. Часть этих параметров нам уже задана. А именно: проектируемая тепловая сеть будет закрытого типа, регулирование будет производиться центральное качественное по отопительной нагрузке. В целях получения базовых представлений об особенностях этих инженерных решений (то есть в учебных целях) обратимся к, подробному источнику информации [4]:
Закрытый тип тепловой сети подразумевает отсутствие отбора сетевой воды абонентом, то есть минимум двухтрубное исполнение сети (возврат сетевой воды) и независимое присоединение установок ГВС. Это, конечно, повышает капитальные затраты (на сооружение тепловой сети) и эксплуатационные затраты (усложнена схема абонентского ввода), но зато обеспечивает следующие преимущества:
1.Гидравлическая изолированность водопроводной воды от сетевой;
2.Упрощение санитарного контроля за качеством воды на ГВС, ввиду сокращённого пути прохождения;
3.Упрощения контроля герметичности теплофикационной системы.
Как известно, регулирование тепловой нагрузки возможно в различных точках тепловой сети (центральное, групповое, местное, индивидуальное). Нам задан только метод центрального регулирования. А для обеспечения высокоэффективного теплоснабжения необходимо регулировать отпуск как минимум на трёх уровнях, обязательно включающих индивидуальный. Однако таких подробностей в нашем проекте рассматриваться не будет.
Центральный качественный метод представляет собой регулирование отпуска теплоты за счёт изменения температуры теплоносителя на входе в систему (при неизменном расходе теплоносителя) и может обеспечить более стабильный тепловой режим, нежели количественный метод. Однако при этом возрастает потребление электроэнергии на питание насосов, связанное с постоянством расхода теплоносителя. Качественное регулирование возможно не на всём промежутке температур отопительного периода, это связано с условиями горячего водоснабжения. По [5] для закрытой системы теплоснабжения температура в местах водоразбора должна быть не менее 50ºС, в связи с этим [1] требует температуру воды в подающем трубопроводе не менее 70ºС (резерв, видимо, учитывает падение температуры воды в местных коммуникациях и в теплообменнике ГВС).
Регулирование по отопительной нагрузке означает, что температура воды в подающей линии тепловой сети соответствует графику качественного регулирования отопительной нагрузки и то, что сеть у нас будет двухтрубная. Решение о регулировании по отопительной нагрузке в данном случае несколько преждевременно, поскольку в проектируемой сети жилищно-коммунальная нагрузка составляет 75,9%, то есть, по рекомендации [1], регулирование должно проводится по совмещённой нагрузке отопления и горячего водоснабжения.
Теперь определимся со схемой присоединения абонентов. Независимое присоединение нагрузки ГВС уже задано. Для отопления принимаем зависимую схему согласно с рекомендациями [1]. Исходим при этом из двух простых соображений:
1.Зависимая схема дешевле и проще (в регулировании и в расчёте);
2.Наш температурный график (115/70) обуславливает максимальное давление воды в сети около 4 атмосфер, тогда как допустимое давление в самых распространённых в РФ отопительных приборах (чугунных радиаторах) 6 атмосфер. То есть жёсткая гидравлическая связь сети с приборами, являющаяся основным недостатком зависимой схемы, работе нашей сети не помешает.
Все три вида нагрузки присоединяем к тепловой сети параллельно. То есть расход теплоносителя будет складываться из суммы его расходов на отдельные виды нагрузки. Всё необходимое для работы оборудование, по возможности, будем располагать в групповых тепловых пунктах (ГТП). Что благоприятно скажется на уровне шума и упростит обслуживание установок. Принципиальная схема такого ГТП приведена на рис. 2.1.
Рисунок 3.1 Принципиальная схема ГТП
– воздухораспределитель;
2– калорифер;
3 – регуляторы расхода (по давлению и температуре);
4 – воздухозаборник;
5 – воздушник;
6 – стояки водоразборных кранов;
7 – нагревательные приборы;
8 – элеватор;
9 – моделирующее устройство (импульс температуры наружного воздуха);
10 – регулируемый циркуляционный насос;
11 – циркуляционный насос;
12 – бак-аккумулятор;
13 – ЦБ вентилятор;
14 – обратный клапан;
15 – подогреватель ГВС.
Рисунок 3.2. Схема двух трубной паровой системы с возвратом конденсата:
1-котлоогрегат;
2- редукционная установка;
3- паропровод;
4- теплообменник;
5- конденсатоотводчик;
8- обратный клапан;
9- сборный бак конденсата;
10- напорный конденсатопровод.