
Книги по МРТ КТ на английском языке / Advanced Imaging of the Abdomen - Jovitas Skucas
.pdf
791
FEMALE REPRODUCTIVE ORGANS
small and capillary-like in appearance. Most of these malformations are believed to be congenital in origin. Most develop in the myometrium.
Metrorrhagia is a common presentation. It is more common in premenopausal women. Uncontrolled bleeding after dilation and curettage should suggest an arteriovenous malformation, a (pseudo)aneurysm, an arteriovenous fistula, or a large vessel trauma.
Gray-scale US in women with uterine arteriovenous malformations is nonspecific, revealing subtle inhomogeneous myometrial tubular structures. Doppler US detects low-resistence flow and signals with flow reversals, suggesting arteriovenous shunting (Fig. 12.33).
Magnetic resonance imaging detects an arteriovenous malformation as a focal uterine tumor containing disrupted junctional zones and, if the tumor is large enough, prominent parametrial blood vessels. Flowing blood in these malformations presents as a serpiginous signal void on both T1and T2-weighted MRI, while stasis results in a hyperintense signal on T2-weighted images. A malformation enhances on postcontrast images, similar to blood vessels. Magnetic resonance angiography shows tortuous, coiled vessels in the pelvis.
Only a few vaginal arteriovenous malformations have been described. These lesions can be suspected with Doppler US, CT, and MRI. They are hypointense on T1and hyperintense on T2-weighted images; contrast-enhanced T1weighted images reveal paradoxical flow-related enhancement in some, possibly caused by turbulent blood flow.
Traditional therapy of massive uncontrolled bleeding was uterine artery ligation or hysterectomy. Pelvic arteriography is diagnostic and also provides access for transcatheter embolization for these often surgically difficult to resect tumors. Selective transcatheter arterial embolization of uterine arteriovenous malformations and other similar vascular abnormalities tends to preserve reproductive capacity.
Uterine Artery Aneurysms
Uterine true aneurysms are rare. (Pseudo)- aneurysms are more common and are a cause of massive bleeding (Fig. 12.34).
Gray-scale US reveals a pulsating, hypoor anechoic structure. True fusiform aneurysms contain an arterial flow pattern. Color and duplex Doppler US identify (pseudo)aneurysms
A B
Figure 12.33. Uterine arteriovenous malformation resulting in vaginal bleeding after dilation and curettage (D&C). A: Transverse gray-scale US reveals a subtle heterogenous appearance on the left side of the uterus (arrows). Color Doppler US revealed increased blood flow in this region (not shown). B: Arteriography identifies a collection of vessels (arrows) supplied by the left uterine artery (arrowhead); it was embolized with coils. (Source: Kwon JH, Kim GS. Obstetric iatrogenic arterial injuries of the uterus. Radiographics 2002;22:35–46, with permission from the Radiological Society of North America.)

792
ADVANCED IMAGING OF THE ABDOMEN
B
A
|
Figure 12.34. Pseudoaneurysm after D&C leading to intermittent |
|
vaginal bleeding. A: Longitudinal gray-scale US identifies a cystic |
|
structure (between cursors) in the left uterine wall. B: Longitudi- |
|
nal duplex US reveals turbulent arterial flow within this structure. |
|
C: Arteriography identifies a pseudoaneurysm (arrows) supplied |
|
by the left uterine artery (arrowhead); it was embolized success- |
|
fully with coils. (Source: Kwon JH, Kim GS. Obstetric iatrogenic arte- |
|
rial injuries of the uterus. Radiographics 2002;22:35–46, with |
C |
permission from the Radiological Society of North America.) |
as cystic structures containing swirling fluid, |
fact, based on data from the New York City |
similar to saccular aneurysms. |
Department of Health, the most common AIDS- |
|
related malignancy in women is cervical cancer |
Immunosuppression |
(55%), followed by lymphoma (29%) and |
Kaposi sarcoma (16%) (116); in some women |
|
|
cervical cancer is the initial AIDS-defining |
An association exists between cervical condy- |
illness. |
loma, dysplasia, and HIV infection. Acquired |
Although non-Hodgkin’s lymphomas are |
immunodeficiency syndrome (AIDS) patients |
relatively common in AIDS patients, ovarian |
have an increased prevalence of cervical |
involvement is rare. An occasional disseminated |
cancer (compared to general population). In |
Burkitt’s lymphoma involves the ovaries. |

793
FEMALE REPRODUCTIVE ORGANS
Posttherapy
Post–Hormone Therapy
Postmenopausal women are placed on estrogen therapy to lessen the osteoporosis or control ovarian atrophy. Because of an increased risk of endometrial hyperplasia and carcinoma with estrogen therapy alone, various regimens of progesterone are often added.
Endovaginal US in asymptomatic postmenopausal women after the initiation of hormone replacement therapy reveals an increased endometrial thickness after the start of therapy. Sequential hormone therapy leads to changes similar to a premenopausal endometrium. Endometrial thickness measured with endovaginal US in healthy women in physiologic menopause was 3.5mm, increasing to 5.7mm after estrogen therapy alone (117); after adding progestin, endometrial thickness measured 6.0mm. Endovaginal color Doppler US reveals that uterine artery PI and RI decrease during the first month of therapy.
Uterine artery pulsatility index in postmenopausal women receiving hormone replacement treatment tends to decrease, presumably due to increased uterine vascularity.
Some women develop vaginal bleeding while on hormonal therapy. Ultrasonography measurement of endometrial thickness does not select those who will bleed.
Postchemotherapy Changes
Tamoxifen citrate is a nonsteroidal antiestrogen agent binding to estrogen receptors and is used in breast cancer therapy. One of the side effects of tamoxifen is endometrial and myometrial stimulation and its use is associated with endometrial hyperplasia, polyps, and carcinomas. Fibromyomas also grow.
Endovaginal US found 69% of postmenopausal women treated with adjuvant tamoxifen to have an endometrial thickness >2.5mm (118). One recommendation is that an endometrial thickness of 6mm be considered a cutoff for endovaginal US in asymptomatic postmenopausal women receiving tamoxifen. A thickened, irregular, and hyperechoic endometrium containing small cysts or a homogeneous appearance is typical. Endovagi-
nal US using intrauterine saline as a contrast agent (hysterosonography) is more specific but not significantly more sensitive than endovaginal US in detecting endometrial abnormalities (119,120). Tamoxifen polyps tend to be larger than typical polyps and are composed of cystic glandular dilation, epithelial metaplasia, and periglandular stromal condensation (121). These polyps range from sessile to pedunculated and appear as a hyperechoic, smoothly marginated tumor. Some contain cysts. An irregular polyp outline or endometrial thickening should raise suspicion for a carcinoma.
Magnetic resonance imaging identifies two patterns in postmenopausal women with breast cancer receiving tamoxifen therapy (122):
1.A homogeneous hyperintense endometrium on T2-weighted images, postcontrast enhancement of the endometrialmyometrial junction, and a lumen signal void. Histopathology in two thirds of these women revealed either atrophic or proliferative endometria.
2.A heterogeneous endometrium on T2weighted images, postcontrast enhancement of the endometrial-myometrial junction, and lattice-like lumen enhancement, with most of these women having polyps.
Chemotherapy for breast cancer results in a loss of uterine volume, measurable with serial imaging.
Some investigators advocate routine US and endometrial biopsy even in asymptomatic women receiving tamoxifen. Hysteroscopy is used to resect any visualized polyps, and endometrial curettage evaluates abnormal endometrial thickening. An American College of Obstetricians and Gynecologists recommendation for women with breast cancer being treated with tamoxifen is to discontinue therapy if atypical hyperplasia is detected (121); a hysterectomy should be considered if further tamoxifen therapy is deemed necessary.
Postoperative Changes
One of the complications encountered with gynecologic surgery is ureteral damage. If damage is suspected, postoperative color Doppler US detection of ureteral jets is worth-

794
while, keeping in mind that it takes longer to visualize bilateral ureteral jets immediately after surgery.
Postlaparoscopy
The most common complication after laparoscopic gynecologic surgery is an incisional hernia. Omental herniation can occur through a trocar incision site.
Postoophorectomy
Occasionally ovarian remnants are left behind unintentionally after an oophorectomy. Some of these remnants are functional and lead to symptoms. Ultrasonography in women with ovarian remnants reveals a range from simple cysts, multiple septations, and presumed residual ovarian tissue with arterial and venous flow; aspiration of ovarian remnants provides symptomatic relief. Thus a US finding of a cystic or multiseptated pelvic mass containing a rim of vascular solid tissue, detected postoophorectomy, should raise the possibility of an ovarian remnant.
ADVANCED IMAGING OF THE ABDOMEN
Thus even complex fluid collections in a woman after hysterectomy do not necessitate antibiotic therapy or surgical drainage.
Imaging of the vaginal cuff shows a symmetric or slightly asymmetric soft tissue tumor, usually surrounded by fat. Sagittal US reveals the vaginal cuff as a hypoechoic linear structure with a thin central echogenic line. Unfortunately, a postoperative hematoma, seroma, abscess, or lymphocele also has a similar appearance, thus making detection of complications difficult. The presence of gas bubbles raises suspicion of an abscess.
Postoperative fibrosis is common. In general, MRI is superior to CT in detecting tumor recurrence, because MRI allows a distinction between fibrosis and tumor; fibrosis has a low signal intensity on T2-weighted images, while tumor has a high signal intensity.
Post-Laser Ablation of Endometrium
Laser endometrial ablation is performed to control symptomatic heavy, painful menses. Magnetic resonance imaging immediately after therapy reveals an increase in uterine volume due to endometrial swelling.
Poststerilization
Tubal sterilization is performed by ligation, occlusion with a clip or band, or by partial fallopian tube resection. Most of these obstructions are in the tube midportion and a postprocedure hysterosalpingogram reveals partial fallopian tube visualization.
Transcervical fallopian tube recanalization is achievable in most women. A successful pregnancy following recanalization, on the other hand, occurs in less than half. One complication of tubal recanalization is tubal perforation, usually associated with few, if any, sequelae.
Posthysterectomy
Hysterectomy-associated complications include pelvic abscess and injury to adjacent structures.
Endovaginal US commonly reveals pelvic fluid collections during the first postoperative week; these fluid collections gradually resolve and do not imply a postoperative complication.
Intrauterine Device Complications
An occasional intrauterine device migrates into the peritoneal cavity. Imaging or laparoscopy should localize it. One, inserted 4 years previously, migrated into the bladder and led to recurrent urinary tract infections (123); it was detected by US, conventional radiographs, and cystoscopy. These migrating devices tend to become surrounded by adhesions and thus are difficult to remove.
An intrauterine device was inserted through the urethra into the bladder (124); it could not be removed by transurethral endoscopy and required surgery.
Postradiation Therapy
Interstitial edema and inflammation of involved tissues develop shortly after radiation therapy. Magnetic resonance imaging during this phase reveals a hyperintense signal on T2-weighted

795
FEMALE REPRODUCTIVE ORGANS
images. Once fibrosis develops, after about 1 year, a hypointense signal predominates from the involved tissue and little postcontrast enhancement is evident.
Girls with Wilms’ tumors who underwent whole abdomen radiotherapy were later found to have primary ovarian failure (125); US revealed their ovaries to be undetected or small and their uteri to be abnormally small in spite of hormone replacement therapy. Ultrasonography in those who underwent hemiabdomen radiotherapy identified normal gonadotropin levels and a normal-sized uterus, but the ovary on the radiotherapy side was not seen or was small in half of the patients (125).
Chronic radiation changes consist primarily of fibrosis. Magnetic resonance imaging shows a low signal intensity on T2-weighted images. Postcontrast MR reveals tissue enhancement even during the chronic phase.
Examination and Surgical
Complications
Hysterosalpingography
Intravasation and subsequent embolization into the lungs are known complications of hysterosalpingography. The previously used oilbased media probably were less painful, but a number of embolization-associated deaths were reported. Therefore, most radiologists currently use water-soluble agents.
Tumor Seeding
Pelviscopic excision of malignant gynecologic tumors potentially disseminates malignant cells to surrounding structures. Localized tumor seeding or tumor dissemination develops intraperitoneally and at trocar sites after laparoscopic tumor resection. Most of these metastases are in patients with FIGO stages IIIC to IV, although even an ovarian mature cystic teratoma containing a focus of carcinoma poses a risk. Seeding occurs not only from malignant tumors; thus during laparoscopic myomectomy fragments of uterine leiomyomas were inadvertently implanted and grew in abdominal-wall incisions.
References
1.Valentini AL, Muzii L, Marana R, et al. Fallopian tube disease: the cobblestone pattern as a radiographic sign. Radiology 2000;217:521–525.
2.Spring DB, Barkan HE, Pruyn SC. Potential therapeutic effects of contrast materials in hysterosalpingography: a prospective randomized clinical trial. Kaiser Permanente Infertility Work Group. Radiology 2000; 214:53–57.
3.Alcazar JL, Errasti T, Zornoza A. Saline infusion sono-
hysterography in endometrial cancer: assessment of malignant cells dissemination risk. Acta Obstet Gynecol Scand 2000;79:321–322.
4.Yang WT, Yuen PM, Ho SS, Leung TN, Metreweli C. Intraoperative laparoscopic sonography for improved preoperative sonographic pathologic characterization of adnexal masses. J Ultrasound Med 1998; 17:53–61.
5.Hawighorst H, Bock M, Knopp MV, et al. Magnetically labeled water perfusion imaging of the uterine arteries and of normal and malignant cervical tissue: initial experiences. Magn Reson Imaging 1998;16:225–234.
6.Okada T, Harada M, Matsuzaki K, Nishitani H, Aono T. Evaluation of female intrapelvic tumors by clinical proton MR spectroscopy. J Magn Reson Imaging 2001;13:912–917.
7.Buttram VC Jr, Gibbons WE. Müllerian anomalies: a proposed classification (an analysis of 144 cases). Fertil Steril 1979;32:40–46.
8.Sheih CP, Li YW, Liao YJ, Huang TS, Kao SP, Chen WJ. Diagnosing the combination of renal dysgenesis, Gartner’s duct cyst and ipsilateral mullerian duct obstruction. J Urol 1998;159:217–221.
9.Mevel O, Tahan H, Michel F. [Rupture of the female urethra in pelvic fractures: report of 2 cases.] [French] Prog Urol 2000;10:1212–1216.
10.Rao PM, Feltmate CM, Rhea JT, Schulick AH, Novelline RA. Helical computed tomography in differentiating appendicitis and acute gynecologic conditions. Obstet Gynecol 1999;93:417–421.
11.Godfrey H, Abernethy L, Boothroyd A. Torsion of an ovarian cyst mimicking enteric duplication cyst on transabdominal ultrasound: two cases. Pediatr Radiol 1998;28:171–173.
12.Tukeva TA, Aronen HJ, Karjalainen PT, Molander P, Paavonen T, Paavonen J. MR imaging in pelvic inflammatory disease: comparison with laparoscopy and US. Radiology 1999;210:209–216.
13.Varghese JC, O’Neill MJ, Gervais DA, Boland GW, Mueller PR. Transvaginal catheter drainage of tuboovarian abscess using the trocar method: technique and literature review. [Review] AJR 2001;177: 139–144.
14.Reyal F, Grynberg H, Sibony O, et al. [Pelvic actinomycosis: a case with secondary localization in the liver.] [French] Presse Med 1999;28:2098–2099.
15.Kirova YM, Feuilhade F, Belda-Lefrere MA, Le Bourgeois JP. Intrauterine device—associated pelvic actinomycosis: a rare disease mimicking advanced ovarian cancer: a case report. Eur J Gynaecol Oncol 1997;18:502–503.

796
ADVANCED IMAGING OF THE ABDOMEN
16.Dykes TA, Isler RJ, McLean AC. MR imaging of Asherman syndrome: total endometrial obliteration. J Comput Assist Tomogr 1991;15:858–860.
17.Atri M, Chow CM, Kintzen G, et al. Expectant treatment of ectopic pregnancies: clinical and sonographic predictors. AJR 2001;176:123–127.
18.Chiang G, Levine D, Swire M, McNamara A, Mehta T. The intradecidual sign: is it reliable for diagnosis of early intrauterine pregnancy? AJR 2004;183:725–731.
19.Hertzberg BS, Kliewer MA, Bowie JD.Adnexal ring sign and hemoperitoneum caused by hemorrhagic ovarian cyst: pitfall in the sonographic diagnosis of ectopic pregnancy. AJR 1999;173:1301–1302.
20.Giambanco L, Chianchiano N, Palmeri V, Catalano G. [Cervical pregnancy: an obstetric emergency. A clinical case.] [Italian] Minerva Ginecol 1998;50: 321–324.
21.Jung SE, Byun JY, Lee JM, Choi BG, Hahn ST. Characteristic MR findings of cervical pregnancy. J Magn Reson Imaging 2001;13:918–922.
22.Ayaz T, Akansel G, Hayirlioglu A, Arslan A, Suer N, Kuru I. Ophthalmic artery color Doppler ultrasonography in mild-to-moderate preeclampsia. Eur J Radiol 2003;46:244–249.
23.Joern H, Funk A, Rath W. Doppler sonographic findings for hypertension in pregnancy and HELLP syndrome. J Perinat Med 1999;27:388–394.
24.Grannum PA, Berkowitz RL, Hobbins JC. The ultrasonic changes in the maturing placenta and their relation to fetal pulmonic maturity. Am J Obstet Gynecol 1979;133:915–922.
25.Kidney DD, Nguyen AM, Ahdoot D, Bickmore D, Deutsch LS, Majors C. Prophylactic perioperative hypogastric artery balloon occlusion in abnormal placentation. AJR 2001;176:1521–1524.
26.Deux JF, Bazot M, Le Blanche AF, et al. Is selective embolization of uterine arteries a safe alternative to hysterectomy in patients with postpartum hemorrhage? AJR 2001;177:145–149.
27.Soto-Wright V, Bernstein M, Goldstein DP, Berkowitz RS. The changing clinical presentation of complete molar pregnancy. Obstet Gynecol 1995;86:775–779.
28.Lindheim SR, Cohen MA, Sauer MV. Ultrasound guided embryo transfer significantly improves pregnancy rates in women undergoing oocyte donation. Int J Gynaecol Obstet 1999;66:281–284.
29.Fleischer AC, Vasquez JM, Cullinan JA, Eisenberg E. Sonohysterography combined with sonosalpingography: correlation with endoscopic findings in infertility patients. J Ultrasound Med 1997;16:381–384.
30.Jain KA, Friedman DL, Pettinger TW, Alagappan R, Jeffrey RB Jr, Sommer FG. Adnexal masses: comparison of specificity of endovaginal US and pelvic MR imaging. Radiology 1993;186:697–704.
31.Hricak H, Chen M, Coakley FV, et al. Complex adnexal masses: detection and characterization with MR imaging—multivariate analysis. Radiology 2000;214: 39–46.
32.Hann LE, Lui DM, Shi W, Bach AM, Selland DL, Castiel M. Adnexal masses in women with breast cancer: US findings with clinical and histopathologic correlation. Radiology 2000;216:242–247.
33.Rieber A, Nussle K, Stohr I, et al. Preoperative diagnosis of ovarian tumors with MR imaging: comparison
with transvaginal sonography, positron emission tomography, and histologic findings. AJR 2001;177: 123–129.
34.Sohaib SA, Sahdev A, Van Trappen P, Jacobs IJ, Reznek RH. Characterization of adnexal mass lesions on MR imaging. AJR 2003;180:1297–1304.
35.Lee JH, Jeong YK, Park JK, Hwang JC. “Ovarian vascular pedicle” sign revealing organ of origin of a pelvic mass lesion on helical CT. AJR 2003;181:131–137.
36.Fedele L, Bianchi S, Portuese A, Borruto F, Dorta M. Transrectal ultrasonography in the assessment of rectovaginal endometriosis. Obstet Gynecol 1998;91:444– 448.
37.Bazot M, Darai E, Hourani R, et al. Deep pelvic endometriosis: MR imaging for diagnosis and prediction of extension of disease. Radiology 2004;232:379– 389.
38.Tanaka YO, Yoshizako T, Nishida M, Yamaguchi M, Sugimura K, Itai Y. Ovarian carcinoma in patients with endometriosis: MR imaging findings. AJR 2000;175: 1423–1430.
39.Ko SF, Wan YL, Ng SH, et al. Adult ovarian granulosa cell tumors: spectrum of sonographic and CT findings with pathologic correlation. AJR 1999;172:1227–1233.
40.Conway C, Zalud I, Dilena M, et al. Simple cyst in the postmenopausal patient: detection and management. J Ultrasound Med 1998;17:369–372.
41.Chen CH, Tiu CM, Chou YH, Chen WY, Hwang B, Niu DM. Congenital hypothyroidism with multiple ovarian cysts. Eur J Pediatr 1999;158:851–852.
42.Lee HJ, Woo SK, Kim JS, Suh SJ. “Daughter cyst” sign: a sonographic finding of ovarian cyst in neonates, infants, and young children. AJR 2000;174:1013–1015.
43.Kikkawa F, Ishikawa H, Tamakoshi K, Nawa A, Suganuma N, Tomoda Y. Squamous cell carcinoma arising from mature cystic teratoma of the ovary: a clinicopathologic analysis. Obstet Gynecol 1997;89: 1017–1022.
44.Diebold J. [Molecular genetics of epithelial ovarian neoplasms: correlations with phenotype and biological behavior.] [Review] [German] Pathologe 1998;19: 95–103.
45.Hisada M, Garber JE, Fung CY, Fraumeni JF Jr, Li FP. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst 1998;90:606–611.
46.Tempany CM, Zou KH, Silverman SG, Brown DL, Kurtz AB, McNeil BJ. Staging of advanced ovarian cancer: comparison of imaging modalities—report from the Radiological Diagnostic Oncology Group. Radiology 2000;215:761–767.
47.Ricke J, Sehouli J, Hach C, Hanninen EL, Lichtenegger W, Felix R. Prospective evaluation of contrastenhanced MRI in the depiction of peritoneal spread in primary or recurrent ovarian cancer. Eur Radiol 2003;13:943–949.
48.Yoshida Y, Kurokawa T, Kawahara K, et al. Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. AJR 2004;182:227–233.
49.Yassa NA, Ryst E. Ovarian vein thrombosis: a common incidental finding in patients who have undergone total abdominal hysterectomy and bilateral salpingooophorectomy with retroperitoneal lymph node dissection. AJR 1999;172:45–47.

797
FEMALE REPRODUCTIVE ORGANS
50.Low RN, Saleh F, Song SY, et al. Treated ovarian cancer: comparison of MR imaging with serum CA-125 level and physical examination—a longitudinal study. Radiology 1999;211:519–528.
51.Funt SA, Hricak H, Abu-Rustum N, Mazumdar M, Felderman H, Chi DS. Role of CT in the management of recurrent ovarian cancer. AJR 2004;182:393–398.
52.Nakamoto Y, Saga T, Ishimori T, et al. Clinical value of positron emission tomography with FDG for recurrent ovarian cancer. AJR 2001;176:1449–1454.
53.Cho SM, Ha HK, Byun JY, et al. Usefulness of FDG PET for assessment of early recurrent epithelial ovarian cancer. AJR 2002;179:391–395.
54.Method MW, Serafini AN, Averette HE, Rodriguez M, Penalver MA, Sevin BU. The role of radioimmunoscintigraphy and computed tomography scan prior to reassessment laparotomy of patients with ovarian carcinoma. A preliminary report. Cancer 1996;77:2286–2293.
55.Sella T, Rosenbaum E, Edelmann DZ,Agid R, Bloom AI, Libson E. Value of chest CT scans in routine ovarian carcinoma follow-up. AJR 2001;177:857–859.
56.Dachman AH, Visweswaran A, Battula R, Jameel S, Waggoner SE. Role of chest CT in the follow-up of ovarian adenocarcinoma. AJR 2001;176:701–705.
57.O’Sullivan SG, Das Narla L, Ferraro E. Primary ovarian leiomyosarcoma in an adolescent following radiation for medulloblastoma. Pediatr Radiol 1998;28:468– 470.
58.Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL. Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 1999;211:249–256.
59.Morimura Y, Nishiyama H, Yanagida K, Sato A. Dysgerminoma with syncytiotrophoblastic giant cells arising from 46,XX pure gonadal dysgenesis. Obstet Gynecol 1998;92:654–656.
60.Yamaoka T, Togashi K, Koyama T, et al. Immature teratoma of the ovary: correlation of MR imaging and pathologic findings. Eur Radiol 2003;13:313–319.
61.Brown DL, Zou KH, Tempany CM, et al. Primary versus secondary ovarian malignancy: imaging findings of adnexal masses in the Radiology Diagnostic Oncology Group Study. Radiology 2001;219:213–218.
62.Jeong YY, Kang HK, Seo JJ, Nam JH. Luteinized fat in Krukenberg tumor: MR findings. Eur Radiol 2002;12 Suppl 3:S130–132.
63.Tjalma WA, Schatteman E, Goovaerts G,Verkinderen L, Van-den Borre F, Keersmaekers G. Adenocarcinoid of the appendix presenting as a disseminated ovarian carcinoma: report of a case. Surg Today 2000;30: 78–81.
64.Soga J, Osaka M, Yakuwa Y. Carcinoids of the ovary: an analysis of 329 reported cases. J Exp Clin Cancer Res 2000;19:271–280.
65.Bakos O, Heimer G. Transvaginal ultrasonographic evaluation of the endometrium related to the histological findings in preand perimenopausal women. Gynecol Obstet Invest 1998;45:199–204.
66.Cohen MA, Sauer MV, Keltz M, Lindheim SR. Utilizing routine sonohysterography to detect intrauterine pathology before initiating hormone replacement therapy. Menopause 1999;6:68–70.
67.Shimizu M, Nakayama M. Endometrial ossification in a postmenopausal woman. J Clin Pathol 1997;50:171– 172.
68.Grasel RP, Outwater EK, Siegelman ES, Capuzzi D, Parker L, Hussain SM. Endometrial polyps: MR imaging features and distinction from endometrial carcinoma. Radiology 2000;214:47–52.
69.Siskin GP, Tublin ME, Stainken BF, Dowling K, Dolen EG. Uterine artery embolization for the treatment of adenomyosis: clinical response and evaluation with MR imaging. AJR 2001;177:297–302.
70.Jha RC, Takahama J, Imaoka I, et al. Adenomyosis: MRI of the uterus treated with uterine artery embolization. AJR 2003;181:851–856.
71.Tsuda H, Kawabata M, Nakamoto O,Yamamoto K. Clinical predictors in the natural history of uterine leiomyoma: preliminary study. J Ultrasound Med 1998;17: 17–20.
72.Caoili EM, Hertzberg BS, Kliewer MA, DeLong D, Bowie JD. Refractory shadowing from pelvic masses on sonography: a useful diagnostic sign for uterine leiomyomas. AJR 2000;174:97–101.
73.Torashima M, Yamashita Y, Matsuno Y, et al. The value of detection of flow voids between the uterus and the leiomyoma with MRI. J Magn Reson Imaging 1998; 8:427–431.
74.Ravina JH, Herbreteau D, Ciraru-Vigneron N, et al. Arterial embolisation to treat uterine myomata. Lancet 1995;346:671–672.
75.Razavi MK, Hwang G, Jahed A, Modanloo S, Chen B. Abdominal myomectomy versus uterine fibroid embolization in the treatment of symptomatic uterine leiomyomas. AJR 2003;180:1571–1575.
76.Li W, Brophy DP, Chen Q, Edelman RR, Prasad PV. Semiquantitative assessment of uterine perfusion using first pass dynamic contrast-enhanced MR imaging for patients treated with uterine fibroid embolization. J Magn Reson Imaging 2000;12:1004– 1008.
77.Hagspiel KD, Matsumoto AH, Berr SS. Uterine fibroid embolization: assessment of treatment response using perfusion-weighted extraslice spin tagging (EST) magnetic resonance imaging. J Magn Reson Imaging 2001;13:982–986.
78.Katsumori T, Nakajima K, Mihara T. Is a large fibroid a high-risk factor for uterine artery embolization? AJR 2003;181:1309–1314.
79.Gabriel H, Pinto CM, Kumar M, et al. MRI detection of uterine necrosis after uterine artery embolization for fibroids. AJR 2004;183:733–736.
80.Vashisht A, Studd JW, Carey AH, et al. Fibroid embolisation: a technique not without significant complications. Br J Obstet Gynaecol 2000;107:1166– 1170.
81.Ryu RK, Siddiqi A, Omary RA, et al. Sonography of delayed effects of uterine artery embolization on ovarian arterial perfusion and function. AJR 2003;181: 89–92.
82.Pelage JP, Guaou NG, Jha RC, Ascher SM, Spies JB. Uterine fibroid tumors: long-term MR imaging outcome after embolization. Radiology 2004;230: 803–809.
83.Burn PR, McCall JM, Chinn RJ, Vashisht A, Smith JR, Healy JC. Uterine fibroleiomyoma: MR imaging

798
ADVANCED IMAGING OF THE ABDOMEN
appearances before and after embolization of uterine arteries. Radiology 2000;214:729–734.
84.Law P, Gedroyc WM, Regan L. Magnetic resonanceguided percutaneous laser ablation of uterine fibroids. J Magn Reson Imaging 2000;12:565–570.
85.Common AA, Mocarski EJ, Kolin A, Pron G, Soucie J. Therapeutic failure of uterine fibroid embolization caused by underlying leiomyosarcoma. J Vasc Interv Radiol 2001;12:1449–1452.
86.Utsunomiya D, Notsute S, Hayashida Y, et al. Endometrial carcinoma in adenomyosis: assessment of myometrial invasion on T2-weighted spin-echo and gadolinium-enhanced T1-weighted images. AJR 2004; 182:399–404.
87.Hardesty LA, Sumkin JH, Hakim C, Johns C, Nath M. The ability of helical CT to preoperatively stage endometrial carcinoma. AJR 2001;176:603–606.
88.Manfredi R, Mirk P, Maresca G, et al. Local-regional staging of endometrial carcinoma: role of MR imaging in surgical planning. Radiology 2004;231:372–378.
89.Seki H, Takano T, Sakai K. Value of dynamic MR imaging in assessing endometrial carcinoma involvement of the cervix. AJR 2000;175:171–176.
90.Koyama T, Togashi K, Konishi I, et al. MR imaging of endometrial stromal sarcoma: correlation with pathologic findings. AJR 1999;173:767–772.
91.Ohguri T, Aoki T, Watanabe H, et al. MRI findings including gadolinium-enhanced dynamic studies of malignant, mixed mesodermal tumors of the uterus: differentiation from endometrial carcinomas. Eur Radiol 2002;12:2737–2742.
92.Marin C, Seoane JM, Sanchez M, Ruiz Y, Garcia JA. Magnetic resonance imaging of primary lymphoma of the cervix. Eur Radiol 2002;12:1541–1545.
93.Nieminen P, Kallio M, Hakama M. The effect of mass screening on incidence and mortality of squamous and adenocarcinoma of cervix uteri. Obstet Gynecol 1995;85:1017–1021.
94.deSouza NM, Whittle M, Williams AD, et al. Magnetic resonance imaging of the primary site in stage I cervical carcinoma: a comparison of endovaginal coil with external phased array coil techniques at 0.5T. J Magn Reson Imaging 2000;12:1020–1026.
95.Ozsarlak O, Tjalma W, Schepens E, et al. The correlation of preoperative CT, MR imaging, and clinical staging (FIGO) with histopathology findings in primary cervical carcinoma. Eur Radiol 2003;13: 2338–235.
96.Postema S, Pattynama PM, van Rijswijk CS, Trimbos JB. Cervical carcinoma: can dynamic contrastenhanced MR imaging help predict tumor aggressiveness? Radiology 1999;210:217–220.
97.Peppercorn PD, Jeyarajah AR, Woolas R, et al. Role of MR imaging in the selection of patients with early cervical carcinoma for fertility-preserving surgery: initial experience. Radiology 1999;212:395–399.
98.Yamashita Y, Baba T, Baba Y, et al. Dynamic contrastenhanced MR imaging of uterine cervical cancer: pharmacokinetic analysis with histopathologic correlation and its importance in predicting the outcome of radiation therapy. Radiology 2000;216: 803–809.
99.Boss EA, Massuger LF, Pop LA, et al. Post-radiotherapy contrast enhancement changes in fast dynamic MRI of
cervical carcinoma. J Magn Reson Imaging 2001;13: 600–606.
100.Williams AD, Cousins C, Soutter WP, et al. Detection of pelvic lymph node metastases in gynecologic malignancy: a comparison of CT, MR imaging, and positron emission tomography. AJR 2001;177:343–348.
101.Yang WT, Lam WW, Yu MY, Cheung TH, Metreweli C. Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. AJR 2000;175:759–766.
102.Umesaki N, Nakai Y, Honda K, et al. Power Doppler findings of adenoma malignum of uterine cervix. Gynecol Obstet Invest 1998;45:213–216.
103.Oliva E, Quinn TR, Amin MB, et al. Primary malignant melanoma of the urethra: a clinicopathologic analysis of 15 cases. Am J Surg Pathol 2000;24:785–796.
104.Thurmond AS, Machan LS, Maubon AJ, et al. A review of selective salpingography and fallopian tube catheterization. Radiographics 2000;20:1759–1768.
105.el Khader K, Ouali M, Nouri M, Koutani A, Hachimi M, Lakrissa A. [Urethral diverticulosis in women. Analysis of 15 cases.] [French] Prog Urol 2001;11: 97–102.
106.Tazi K, el Fassi J, Karmouni T, et al. [Vesico-uterine fistula. Report of 10 cases.] [French] Prog Urol 2000;10: 1173–1176.
107.Lee BH, Choe DH, Lee JH, et al. Device for occlusion of rectovaginal fistula: clinical trials. Radiology 1997;203: 65–69.
108.Paetzel C, Strotzer M, Furst A, Rentsch M, Lenhart M, Feuerbach S. [Dynamic MR defecography for diagnosis of combined functional disorders of the pelvic floor in proctology.] [German] Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2001;173:410–415.
109.Kelvin FM, Maglinte DD, Hale DS, Benson JT. Female pelvic organ prolapse: a comparison of triphasic dynamic MR imaging and triphasic fluoroscopic cystocolpoproctography. AJR 2000;174:81–88.
110.Anthuber C, Lienemann A. [Morphological and functional pelvic floor disorders from the gynecological viewpoint.] [Review] [German] Radiologe 2000;40: 437–445.
111.Maglinte DD, Kelvin FM, Fitzgerald K, Hale DS, Benson JT. Association of compartment defects in pelvic floor dysfunction. AJR 1999;172:439–444.
112.Leder RA, Paulson EK. Vaginitis emphysematosa: CT and review of the literature. AJR 2001;176:623–625.
113.Rozenblit AM, Ricci ZJ, Tuvia J, Amis ES Jr. Incompetent and dilated ovarian veins: a common CT finding in asymptomatic parous women. AJR 2001;176: 119–122.
114.Belenky A, Bartal G, Atar E, Cohen M, Bachar GN. Ovarian varices in healthy female kidney donors: incidence, morbidity, and clinical outcome. AJR 2002; 179:625–627.
115.Richards DS, Cruz AC. Sonographic demonstration of widespread uterine angiomatosis in a pregnant patient with Klippel-Trenaunay-Weber syndrome. J Ultrasound Med 1997;16:631–633.
116.Maiman M, Fruchter RG, Clark M, Arrastia CD, Matthews R, Gates EJ. Cervical cancer as an AIDSdefining illness. Obstet Gynecol 1997;89:76–80.
117.Berardesca C,Chiechi LM,Caradonna F,Loizzi V,Loizzi P. [Ultrasonic evaluation of endometrial changes

799
FEMALE REPRODUCTIVE ORGANS
induced by cyclic sequential hormone substitution therapy.] [Italian] Minerva Ginecol 1998;50:503–505.
118.Tesoro MR, Borgida AF, MacLaurin NA, Asuncion CM. Transvaginal endometrial sonography in postmenopausal women taking tamoxifen. Obstet Gynecol 1999;93:363–366.
119.Hann LE, Gretz EM, Bach AM, Francis SM. Sonohysterography for evaluation of the endometrium in women treated with tamoxifen. AJR 2001;177:337–342.
120.Fong K, Kung R, Lytwyn A, et al. Endometrial evaluation with transvaginal US and hysterosonography in asymptomatic postmenopausal women with breast cancer receiving tamoxifen. Radiology 2001;220:765– 773.
121.Ascher SM, Imaoka I, Lage JM. Tamoxifen-induced uterine abnormalities: the role of imaging. [Review] Radiology 2000;214:29–38.
122.Ascher SM, Johnson JC, Barnes WA, Bae CJ, Patt RH, Zeman RK. MR imaging appearance of the uterus in postmenopausal women receiving tamoxifen therapy for breast cancer: histopathologic correlation. Radiology 1996;200:105–110.
123.Ndoye A, Ba M, Fall PA, Sylla C, Gueye DM, Diagne BA. [Migration of an intrauterine device to the bladder.] [French] Prog Urol 2000;10:295–297.
124.Hernandez-Valencia M, Carrillo Pacheco A. [Intravesical translocation of an intrauterine device, report of a case.] [Spanish] Ginecol Obstet Mex 1998;66: 290–292.
125.Nussbaum Blask AR, Nicholson HS, Markle BM, Wechsler-Jentzch K, O’Donnell R, Byrne J. Sonographic detection of uterine and ovarian abnormalities in female survivors of Wilms’ tumor treated with radiotherapy. AJR 1999;172:759–763.

13
Male Reproductive Organs
Technique
Ultrasonography
Ultrasonography (US) has become the modality of choice for scrotal imaging. It can differentiate intrafrom extratesticular tumors with a sensitivity of over 95%. The specificity, however, is considerably lower. Transducers using 10-MHz provide detailed resolution, although with scrotal swelling a lower frequency is necessary for full coverage.
Seminal vesicles and surrounding structures are readily studied with endorectal US. Threedimensional (3D) endorectal US outlines the prostate in three planes and aids the study of transition zone hyperplasia; the central zone and enlarged transition zones are best identified using a coronal plane.
Transabdominal gray-scale US has a limited role in evaluating the prostate; the gland is located too far posteriorly and is too small for detailed study. An endorectal US approach is preferred.
Variability in interpreting endorectal US prostate images is a concern. Even well-trained physicians differ both in describing findings of random videotaped images of the prostate and in deciding whether to biopsy.
Transperineal US during contrast enhanced voiding urosonography has been proposed in children (1). Posterior urethral valves can be detected with this technique but further work is necessary to establish its clinical relevance.
Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) of the scrotum is still evolving. Especially in children, with an equivocal US study MRI may obviate the need for exploratory surgery. In addition, new applications being reported suggest that MRI will evolve into the primary imaging modality of the testes.
Endorectal surface coils allow prostate zonal study. The prostatic capsule, neurovascular bundles, vas deferens, and seminal vesicles are readily studied.
T1-weighted magnetic resonance (MR) images outline the prostatic margin with surrounding fat, although the internal prostate zonal architecture is not defined. T2-weighted images show a hyperintense peripheral zone and a heterogeneous more hypointense central and transition zones. An endorectal coil improves spatial resolution. Postgadolinium T1weighted images reveal less peripheral zone enhancement than central zone.
Magnetic resonance voiding cystourethrography is feasible after gadolinium-enhanced excretory MR urography. Magnetic resonance fluoroscopy using a T1-weighted gradient echo sequence provides real-time urethral imaging during voiding. Both sonourethrography and MR imaging of the anterior urethra are feasible, with the urethral lumen distended with saline. Both modalities provide information about periurethral tissues.
801