
- •Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.
- •1.1. Механічні властивості біологічних тканин
- •1.1.2. Деформація біологічних тканин
- •1.2. Плин в'язких рідин у біологічних системах
- •1.2.1. В'язкість рідини
- •1.2.2. В'язкість крові
- •1.2.3. В'язко-пружні властивості біологічних тканин
- •1.2.4. Основні рівняння руху рідини
- •1.2.5. Критерії механічної подібності рідин, що рухаються
- •1.2.6. Пульсові хвилі
- •1.3. Механічні коливання
- •1.3.1. Гармонічні коливання та їх основні параметри
- •1.3.2. Затухаючі коливання і аперіодичний рух
- •1.3.3. Вимушені коливання
- •1.3.4. Явище резонансу і автоколивання
- •1.3.5. Додавання гармонічних коливань
- •1.4. Механічні хвилі
- •1.4.1. Хвильове рівняння. Поздовжні і поперечні хвилі
- •1.4.2. Потік енергії хвилі. Вектор Умова
- •1.5. Акустика. Елементи фізики слуху. Основи аудіометрії
- •1.5.1. Природа звуку, його основні характеристики (об'єктивні і суб'єктивні)
- •1.5.2. Закон Вебера-Фехнера
- •1.5.3. Ультразвук
- •1.5.4. Інфразвук
- •1.6. Практикум з бюреології
- •1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
- •1.6.2. Лабораторна робота №2 "Визначення коефіцієнта в'язкості"
- •2.1. Електростатика
- •2.1.1. Основні характеристики електричного поля
- •2.1.2. Електричний диполь
- •2.1.3. Діелектрики, поляризація діелектриків
- •2.1.4. Діелектричні властивості біологічних тканин
- •2.1.5. П'єзоелектричний ефект
- •2.2. Постійний струм. Електропровідність біологічних тканин
- •2.2.1. Характеристики електричного струму
- •2.2.2. Електропровідність біологічних тканин ірідин
- •2.2.3. Дія електричного струму на живий організм
- •2.3. Магнітне поле
- •2.3.1. Магнітне поле у вакуумі і його характеристики
- •2.3.2. Закон Біо-Савара-Лапласа
- •2.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •2.3.4. Магнітні властивості речовини
- •2.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •2.4. Електромагнітні коливання
- •2.4.1. Рівняння електричних коливань
- •2.4.2. Вимушені електричні коливання, змінний струм
- •2.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •2.4.4. Імпеданс біологічних тканин
- •2.5. Електромагнітні хвилі
- •2.5.1. Струм зміщення
- •2.5.2. Рівняння Максвелла
- •2.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •2.5.4. Шкала електромагнітних хвиль
- •2.6. Семінар "методика одержання, реєстрації та передачі медико-бюлогічної інформації"
- •2.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •2.6.3. Осцилографи, генератори, підсилювачі, датчики
- •2.7. Лабораторний практикум
- •2.7.1. Лабораторна робота №1 "Визначення величини артеріального тиску за допомогою ємнісного датчика"
- •2.7.2. Лабораторна робота №2 "Напівпровідниковий діод"
- •2.7.3. Лабораторна робота №3 "Вивчення роботи транзистора"
- •2.7.4. Лабораторна робота №4 "Електрофоретичний метод визначення рухливості іонів"
- •3.1. Загальні відомості про електронну медичну апаратуру (ема)
- •3.1.1. Класифікація електронної медичної апаратури
- •3.1.2. Техніка безпеки
- •3.1.3. Правила безпеки
- •3.1.4. Технічні характеристики ема
- •3.2. Семінар "взаємодія електромагнітного поля з біологічними тканинами"
- •3.2.1. Основні характеристики емп
- •3.2.2. Основні процеси, які характеризують дію емп на біологічні тканини
- •3.2.3. Теплова дія емп на бт
- •3.2.4. Специфічна дія емп на біологічні тканини
- •3.3. Лабораторна робота №1 "робота з фізіотерапевтичною апаратурою"
- •3.3.1. Робота з увч-апаратом
- •3.3.2. Ультразвуковий терапевтичний апарат
- •3.3.3. Апарат для дарсонвалізації"Іскра-1"
- •3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
- •3.4.1. Природа електрокардіограми (екг)
- •3.4.2. Завдання до лабораторної роботи
- •3.5. Лабораторна робота №3 "робота з реографом ргч-01"
- •3.5.1. Додаткові теоретичні відомості
- •3.5.2. Стислі технічні характеристики та інструкція з експлуатації реографа ргч-01
- •4.1. Міжмолекулярні взаємодії у біополімерах
- •4.1.1. Класифікація взаємодій у біополімерах
- •4.2. Структурна організація білків та нуклеїнових кислот
- •4.2.1. Первинна структура
- •4.2.2. Вторинна структура
- •4.2.3. Третинна структура
- •4.2.4. Четвертинна структура
- •4.3. Будова і властивості біологічних мембран
- •4.4. Пасивний та активний транспорт речовин крізь мембранні структури клітин
- •4.4.1. Пасивний транспорт незаряджених молекул
- •4.4.2. Пасивний транспорт іонів
- •4.4.3. Активний транспорт
- •4.5. Біологічні потенціали
- •4.5.1. Рівноважний мембранний потенціал Нернста
- •4.5.2. Дифузійний потенціал
- •4.5.3. Потенціал Доннана. Доннанівська рівновага
- •4.5.4. Стаціонарний потенціал Гольдмана-Ходжкіна-Катца
- •4.5.5. Потенціал дії. Механізм виникнення та поширення нервового імпульсу
- •4.6. Лабораторний практикумі
- •4.6.1. Лабораторна робота "Дослідження нелінійних властивостей провідності шкіри жаби"
- •4.6.2. Лабораторна робота "Дослідження дисперсії електричного імпедансу біологічних тканин"
- •4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
- •4.6.4. Практичне заняття "Вивчення біофізики мембран за допомогою комп'ютерних програм"
- •5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
- •5.2. Основи термодинаміки незворотних процесів
- •5.2.1. Лінійний закон
- •5.2.2. Принцип симетрії кінетичних коефіцієнтів і виробництво ентропії
- •5.2.3. Спряження потоків у біологічних системах
- •5.2.4. Стаціонарний стан відкритих систем і теорема Пригожина щодо мінімуму виробництва ентропії
- •5.3. Відкриті медико-бюлогічні системи, що знаходяться далеко від рівноваги (елементи синергетики)
- •5.4. Моделювання процесів у складних медико-бюлопчних системах
- •5.5. Практичне заняття "термодинаміка відкритих біологічних систем"
- •6.1. Інтерференція світла
- •6.1.1. Інтерференція від двох когерентних світлових джерел
- •6.1.2. Історія відкриття явища просвітлення оптики, праці о. Смакули
- •6.1.3. Інші застосування явища інтерференції світла
- •6.2. Дифракція світла
- •6.2.1. Дифракція на щілині в паралельних променях
- •6.2.2. Дифракційна решітка
- •6.2.3. Голографія та її застосування в медицині
- •6.3. Геометрична оптика
- •6.3.1. Ідеальна центрована оптична система
- •6.3.2. Похибки оптичних систем
- •6.3.3. Оптична мікроскопія
- •6.4. Поляризація світла
- •6.4.1. Поляризація світла при відбиванні та заломленні
- •6.4.2. Поляризація при подвійному променезаломленні в кристалах
- •6.4.3. Поляризація світла при проходженні крізь поглинаючі анізотропні речовини
- •6.5. Взаємодія світла з речовиною
- •6.5.1. Дисперсія світла
- •6.5.2. Поглинання світла
- •6.5.3. Розсіяння світла
- •6.6. Фізичні основи термографії, закони теплового випромінювання
- •6.6.1. Закон Кірхгофа
- •6.6.2. Закон випромінювання Планка
- •6.6.3. Закон Стефана-Больцмана
- •6.6.4. Закон зміщення Віна
- •6.6.5. Випромінювання Сонця
- •6.6.6. Інфрачервоне випромінювання
- •6.6.7. Ультрафіолетове випромінювання
- •6.7. Біофізичні основи зорової рецепції
- •6.8. Лабораторний практикум
- •6.8.1. Лабораторна робота "Вивчення мікроскопа та вимірювання мікрооб'єктів"
- •6.8.2. Лабораторна робота "Визначення концентрації розчинів рефрактометричним методом"
- •7.1.1. Місце квантової механіки в системі наук про рух тіл
- •7.1.2. Гіпотеза де Бройля
- •7.1.3. Співвідношення невизначеностей Гейзенберга
- •7.1.4. Основне рівняння квантової механіки - рівняння Шредінгера
- •7.2. Випромінювання та поглинання енергії атомами та молекулами
- •7.2.1. Атомні спектри
- •7.2.2. Молекулярні спектри
- •7.3. Електронний парамагнітний резонанс,
- •7.3.1. Метод електронного парамагнітного резонансу
- •7.3.2. Метод спінових міток (спінових зондів)
- •7.3.3. Спін-імунологічний метод
- •7.3.4. Метод ядерного магнітного резонансу
- •7.4. Практикум 3 квантової механіки
- •7.4.1. Практичне заняття "Основні уявлення квантової механіки"
- •7.4.2. Лабораторна робота "Застосування фотоелемента для виміру освітленості та визначення його чутливості"
- •7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
- •8.1. Рентгенівські промені
- •8.1.1. Історія відкриття рентгенівських променів, праці і. Пулюя
- •8.1.2. Природа рентгенівських променів і методи їх отримання
- •8.1.3. Гальмівне рентгенівське випромінювання
- •8.1.4. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •8.2. Радіоактивне випромінювання
- •8.2.1. Радіоактивність, її властивості
- •8.2.2. Основний закон радіоактивного розпаду, період напіврозпаду, активність
- •8.2.3. Правила зміщення, особливості спектрів при радіоактивному розпаді
- •8.3. Основи дозиметрії іонізуючого випромінювання
- •8.3.1. Експозиційна доза, її потужність, одиниці
- •8.3.2. Поглинена доза, її потужність, одиниці
- •8.3.3. Еквівалентна доза, її потужність, одиниці
- •8.3.4. Дозиметри іонізуючого випромінювання
- •8.4. Взаємодія іонізуючого випромінювання з речовиною
- •8.4.1. Первинні фізичні механізми взаємодії рентгенівського випромінювання з речовиною
- •8.4.2. Первинні механізми дії радіоактивного випромінювання і потоків частинок на речовину
- •8.4.3. Фізико-хімічні механізми радіаційних пошкоджень
- •8.4.4. Ефект дії малих доз іонізуючого випромінювання
- •8.5. Застосування рентгенівського випромівання в медицині
- •8.5.1. Методи рентгенодіагностики
- •8.5.2. Рентгенотерапія
- •8.5.3. Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •8.5.4. Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •8.5.5. Деякі факти реакції крові на опромінення
- •8.5.6. Опромінення малими дозами великих груп людей
- •8.5.7. Латентний період-час виявлення в організмі порушень, викликаних радіацією
- •8.5.8. Проблеми ризику, пов'язаного із радіаційною дією
- •8.6. Комп'ютерна томографія
- •8.6.1. Рентгенівська томографія
- •8.6.2. Ямр-томографія
- •8.6.3. Позитронна емісійна томографія
- •8.7. Практичне заняття "рентгенівське випромінювання, його застосування"
- •8.8.Практичне заняття "радіоактивне випромінювання та його дія на біооб'єкти"
- •8.9. Лабораторна робота "визначення коефіцієнта лінійного послаблення гамма-випромінювання"
- •8.10. Лабораторна робота "робота з дозиметром дргз-04"
- •1. Призначення дозиметра дргз-04
- •2. Склад приладу
- •3. Характеристики дозиметра дргз-04
- •4. Управління роботою дозиметра дргз-04
- •5. Порядок виконання роботи
5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
Найважливіша властивість живих організмів полягає в їх здатності перетворювати і запасати енергію в різних формах. Саме цим визначається значення термодинамічного підходу для вивчення спільних закономірностей перетворення енергії, які є універсальними і загальними для явищ як живої, так і неживої природи. Інша специфіка біологічних об'єктів полягає в тому, що вони не є ізольованими від зовнішнього середовища. Через контакти із зовнішнім середовищем живі організми обмінюються з оточенням речовиною, енергією та інформацією, тобто є відкритими системами.
Дослідники, вивчаючи складні процеси в живих системах, створюють певні моделі цих процесів шляхом аналізу медико-біологічних даних. При цьому, зокрема, використовується феноменологічний, або термодинамічний підхід. Закони термодинаміки відкритих систем представляють саме ту універсальну основу, на якій мають будуватися і вдосконалюватися подібні моделі. Нагадаємо основні закони термодинаміки.
Перший закон (перше начало) термодинаміки: теплота, що підводиться до системи, йде на зміну її внутрішньої енергії та на роботу, яку здійснює система над зовнішніми тілами.
Математичний запис 1-го начала термодинаміки виглядає так:
(5.1)
де
враховано, що внутрішня енергіяє
повним диференціалом відповідних
термодинамічних змінних, тоді як теплота
і робота
не
є такими.
Емпірична основа для 1-го начала термодинаміки була створена насамперед дослідженнями англійського фізика Джоуля, який в 1840-1845 рр. показав, що потрібна одна і та сама механічна робота для нагрівання певної кількості води.
Цікаво відзначити той значний внесок, який зробили медики у встановлення цього одного з найважливіших законів природи. Так, вважається, що честь відкриття 1-го закону (начала) термодинаміки, який є по суті законом збереження енергії, належить разом з фізиками Джоулем і Гельмгольцем ще й лікарю Майєру.
Другий закон (друге начало) термодинаміки: в ізольованій системі неможливий перехід теплоти від менш нагрітого тіла до більш нагрітого.
Це
формулювання 2-го закону термодинаміки
належить німецькому фізику Клаузіусу,
який в 1865 р. ввів у науку фундаментальне
поняття ентропії. Ентропія
-
це така функція стану, що характеризує
напрямок самодовіль-ного процесу в
ізольованій системі.
Ентропія ізольованої системи зростає
з наближенням до рівноважного стану. У
рівновазі ентропія досягає свого
максимального значення.
Важлива роль, яка відводиться в термодинаміці ентропії, пов'язана принаймні з двома причинами:
1)
зміна ентропії
характеризує
теплоту
яку одержала або віддала система при
взаємодії з оточенням:
(знак "=" відповідає зворотним
процесам, тоді як знак ">" -
незворотним, реальним процесам в
природі);
2)
ентропія характеризує ступінь
впорядкованості (або невпорядкованості)
системи. Згідно з принципом Больцмана
ентропія пов'язана з термодинамічною
ймовірністю
стану
системи за допомогою такого фундаментального
співвідношення:
(5.2)
де
-
стала Больцмана. Не входячи в теоретичні
тонкощі, можна стверджувати, що
термодинамічна ймовірність
дорівнює числу мікростанів, за допомогою
яких реалізується даний емпіричний
стан системи при заданій енергії, об'ємі
та кількості частинок.
Термодинамічні потенціали. Термодинамічний стан будь-якої системи повністю визначається її термодинамічними потенціалами. Для кожного повного набору незалежних термодинамічних параметрів існує певний термодинамічний потенціал, за допомогою якого можуть бути обчислені будь-які макроскопічні характеристики системи. Наведемо визначення і основні властивості чотирьох термодинамічних потенціалів - внутрішньої енергії, ентропії, вільної енергії Гіббса і вільної енергії Гельмгольця.
Внутрішня
енергіяПерші
два закони (начала) термодинаміки дають
спільно такий вираз для зміни внутрішньої
енергії відкритої однокомпонентної
системи:
(5.3)
З
цього співвідношення випливає, що
внутрішня енергія є природним
термодинамічним потенціалом при обранні
в якості набору незалежних змінних
ентропіїоб'єму
і
кількості часток
Диференціювання
внутрішньої енергії дає такі параметри,
як температура
тиск
і
хімічний потенціал
що
є спряженими в термодинамічному сенсі
обраному набору незалежних змінних:
Очевидно,
що зміна внутрішньої енергії при
адіабатичному процесівизначається
роботою діючих на систему зовнішніх
сил, тоді як в умовах постійності об'єму
ця зміна визначається теплотою, що
передається системі.
Ентропія
(тепловміст)
Ентропія пов'язана з внутрішньою енергією
таким співвідношенням:
а її повний диференціал
(5.4)
З
цього виразу стає зрозуміло, що ентропія,
як термодинамічний потенціал, має бути
використана для набору незалежних
змінних
Для
ізобаричного процесу зміна ентропії
визначається теплотою, що поглинає
(віддає) система. Диференціювання
ентропії дає параметри:
Вільна
енергія ГіббсаВільна
енергія Гіббса пов'язана такими
співвідношеннями з внутрішньою енергією
і ентропією:
а її повний диференціал
(5.5)
Видно,
що вільній енергії Гіббса відповідає
набір незалежних змінних
Спряжені в термодинамічному значенні
параметри виходять як такі похідні від
вільної енергії Гіббса:
Останнє
співвідношення показує, що хімічний
потенціалє
вільна енергія Гіббса в розрахунку на
один моль при сталих температурі та
тиску. У зв'язку з проведеним у попередньому
шостому розділі розглядом мембранних
електричних потенціалів клітин зауважимо,
що в присутності електричного поля
та із врахуванням розчиненої речовини
хімічний потенціал (в цьому випадку
його називають електрохімічним
потенціалом) має такий вигляд:
(в
розрахунку на одну молекулу);
(в
розрахунку на один моль),
де-
валентність;
-
елементарний заряд;
-
число Фарадея;
-
хімічний потенціал розчинника;
-
концентрація розчиненої речовини
(наприклад, певного іона);
-
потенціал електричного поля.
Вільна
енергія Гельмгольця
Для
цього термодинамічного потенціалу
маємо:
Відповідно
(5.6)
Звідси
випливає, що для вільної енергії
Гельмгольця природним набором незалежних
змінних є
Необхідно відзначити також, що в природних
умовах значно легше реалізувати вимогу
постійності температури
ніж ентропії
Тому
два останніх термодинамічних потенціали
- вільні енергії Гіббса
і
Гельмгольця
-
знаходять більш широке застосування
для опису медико-біологічних систем,
оскільки для них ізотермічно-ізобарні
або ізотермічно-ізохорні умови є найбільш
природними. З наближенням до положення
рівноваги вільні енергії Гіббса
і
Гельмгольця
набувають
своїх мінімальних значень.