
- •Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.
- •1.1. Механічні властивості біологічних тканин
- •1.1.2. Деформація біологічних тканин
- •1.2. Плин в'язких рідин у біологічних системах
- •1.2.1. В'язкість рідини
- •1.2.2. В'язкість крові
- •1.2.3. В'язко-пружні властивості біологічних тканин
- •1.2.4. Основні рівняння руху рідини
- •1.2.5. Критерії механічної подібності рідин, що рухаються
- •1.2.6. Пульсові хвилі
- •1.3. Механічні коливання
- •1.3.1. Гармонічні коливання та їх основні параметри
- •1.3.2. Затухаючі коливання і аперіодичний рух
- •1.3.3. Вимушені коливання
- •1.3.4. Явище резонансу і автоколивання
- •1.3.5. Додавання гармонічних коливань
- •1.4. Механічні хвилі
- •1.4.1. Хвильове рівняння. Поздовжні і поперечні хвилі
- •1.4.2. Потік енергії хвилі. Вектор Умова
- •1.5. Акустика. Елементи фізики слуху. Основи аудіометрії
- •1.5.1. Природа звуку, його основні характеристики (об'єктивні і суб'єктивні)
- •1.5.2. Закон Вебера-Фехнера
- •1.5.3. Ультразвук
- •1.5.4. Інфразвук
- •1.6. Практикум з бюреології
- •1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
- •1.6.2. Лабораторна робота №2 "Визначення коефіцієнта в'язкості"
- •2.1. Електростатика
- •2.1.1. Основні характеристики електричного поля
- •2.1.2. Електричний диполь
- •2.1.3. Діелектрики, поляризація діелектриків
- •2.1.4. Діелектричні властивості біологічних тканин
- •2.1.5. П'єзоелектричний ефект
- •2.2. Постійний струм. Електропровідність біологічних тканин
- •2.2.1. Характеристики електричного струму
- •2.2.2. Електропровідність біологічних тканин ірідин
- •2.2.3. Дія електричного струму на живий організм
- •2.3. Магнітне поле
- •2.3.1. Магнітне поле у вакуумі і його характеристики
- •2.3.2. Закон Біо-Савара-Лапласа
- •2.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •2.3.4. Магнітні властивості речовини
- •2.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •2.4. Електромагнітні коливання
- •2.4.1. Рівняння електричних коливань
- •2.4.2. Вимушені електричні коливання, змінний струм
- •2.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •2.4.4. Імпеданс біологічних тканин
- •2.5. Електромагнітні хвилі
- •2.5.1. Струм зміщення
- •2.5.2. Рівняння Максвелла
- •2.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •2.5.4. Шкала електромагнітних хвиль
- •2.6. Семінар "методика одержання, реєстрації та передачі медико-бюлогічної інформації"
- •2.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •2.6.3. Осцилографи, генератори, підсилювачі, датчики
- •2.7. Лабораторний практикум
- •2.7.1. Лабораторна робота №1 "Визначення величини артеріального тиску за допомогою ємнісного датчика"
- •2.7.2. Лабораторна робота №2 "Напівпровідниковий діод"
- •2.7.3. Лабораторна робота №3 "Вивчення роботи транзистора"
- •2.7.4. Лабораторна робота №4 "Електрофоретичний метод визначення рухливості іонів"
- •3.1. Загальні відомості про електронну медичну апаратуру (ема)
- •3.1.1. Класифікація електронної медичної апаратури
- •3.1.2. Техніка безпеки
- •3.1.3. Правила безпеки
- •3.1.4. Технічні характеристики ема
- •3.2. Семінар "взаємодія електромагнітного поля з біологічними тканинами"
- •3.2.1. Основні характеристики емп
- •3.2.2. Основні процеси, які характеризують дію емп на біологічні тканини
- •3.2.3. Теплова дія емп на бт
- •3.2.4. Специфічна дія емп на біологічні тканини
- •3.3. Лабораторна робота №1 "робота з фізіотерапевтичною апаратурою"
- •3.3.1. Робота з увч-апаратом
- •3.3.2. Ультразвуковий терапевтичний апарат
- •3.3.3. Апарат для дарсонвалізації"Іскра-1"
- •3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
- •3.4.1. Природа електрокардіограми (екг)
- •3.4.2. Завдання до лабораторної роботи
- •3.5. Лабораторна робота №3 "робота з реографом ргч-01"
- •3.5.1. Додаткові теоретичні відомості
- •3.5.2. Стислі технічні характеристики та інструкція з експлуатації реографа ргч-01
- •4.1. Міжмолекулярні взаємодії у біополімерах
- •4.1.1. Класифікація взаємодій у біополімерах
- •4.2. Структурна організація білків та нуклеїнових кислот
- •4.2.1. Первинна структура
- •4.2.2. Вторинна структура
- •4.2.3. Третинна структура
- •4.2.4. Четвертинна структура
- •4.3. Будова і властивості біологічних мембран
- •4.4. Пасивний та активний транспорт речовин крізь мембранні структури клітин
- •4.4.1. Пасивний транспорт незаряджених молекул
- •4.4.2. Пасивний транспорт іонів
- •4.4.3. Активний транспорт
- •4.5. Біологічні потенціали
- •4.5.1. Рівноважний мембранний потенціал Нернста
- •4.5.2. Дифузійний потенціал
- •4.5.3. Потенціал Доннана. Доннанівська рівновага
- •4.5.4. Стаціонарний потенціал Гольдмана-Ходжкіна-Катца
- •4.5.5. Потенціал дії. Механізм виникнення та поширення нервового імпульсу
- •4.6. Лабораторний практикумі
- •4.6.1. Лабораторна робота "Дослідження нелінійних властивостей провідності шкіри жаби"
- •4.6.2. Лабораторна робота "Дослідження дисперсії електричного імпедансу біологічних тканин"
- •4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
- •4.6.4. Практичне заняття "Вивчення біофізики мембран за допомогою комп'ютерних програм"
- •5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
- •5.2. Основи термодинаміки незворотних процесів
- •5.2.1. Лінійний закон
- •5.2.2. Принцип симетрії кінетичних коефіцієнтів і виробництво ентропії
- •5.2.3. Спряження потоків у біологічних системах
- •5.2.4. Стаціонарний стан відкритих систем і теорема Пригожина щодо мінімуму виробництва ентропії
- •5.3. Відкриті медико-бюлогічні системи, що знаходяться далеко від рівноваги (елементи синергетики)
- •5.4. Моделювання процесів у складних медико-бюлопчних системах
- •5.5. Практичне заняття "термодинаміка відкритих біологічних систем"
- •6.1. Інтерференція світла
- •6.1.1. Інтерференція від двох когерентних світлових джерел
- •6.1.2. Історія відкриття явища просвітлення оптики, праці о. Смакули
- •6.1.3. Інші застосування явища інтерференції світла
- •6.2. Дифракція світла
- •6.2.1. Дифракція на щілині в паралельних променях
- •6.2.2. Дифракційна решітка
- •6.2.3. Голографія та її застосування в медицині
- •6.3. Геометрична оптика
- •6.3.1. Ідеальна центрована оптична система
- •6.3.2. Похибки оптичних систем
- •6.3.3. Оптична мікроскопія
- •6.4. Поляризація світла
- •6.4.1. Поляризація світла при відбиванні та заломленні
- •6.4.2. Поляризація при подвійному променезаломленні в кристалах
- •6.4.3. Поляризація світла при проходженні крізь поглинаючі анізотропні речовини
- •6.5. Взаємодія світла з речовиною
- •6.5.1. Дисперсія світла
- •6.5.2. Поглинання світла
- •6.5.3. Розсіяння світла
- •6.6. Фізичні основи термографії, закони теплового випромінювання
- •6.6.1. Закон Кірхгофа
- •6.6.2. Закон випромінювання Планка
- •6.6.3. Закон Стефана-Больцмана
- •6.6.4. Закон зміщення Віна
- •6.6.5. Випромінювання Сонця
- •6.6.6. Інфрачервоне випромінювання
- •6.6.7. Ультрафіолетове випромінювання
- •6.7. Біофізичні основи зорової рецепції
- •6.8. Лабораторний практикум
- •6.8.1. Лабораторна робота "Вивчення мікроскопа та вимірювання мікрооб'єктів"
- •6.8.2. Лабораторна робота "Визначення концентрації розчинів рефрактометричним методом"
- •7.1.1. Місце квантової механіки в системі наук про рух тіл
- •7.1.2. Гіпотеза де Бройля
- •7.1.3. Співвідношення невизначеностей Гейзенберга
- •7.1.4. Основне рівняння квантової механіки - рівняння Шредінгера
- •7.2. Випромінювання та поглинання енергії атомами та молекулами
- •7.2.1. Атомні спектри
- •7.2.2. Молекулярні спектри
- •7.3. Електронний парамагнітний резонанс,
- •7.3.1. Метод електронного парамагнітного резонансу
- •7.3.2. Метод спінових міток (спінових зондів)
- •7.3.3. Спін-імунологічний метод
- •7.3.4. Метод ядерного магнітного резонансу
- •7.4. Практикум 3 квантової механіки
- •7.4.1. Практичне заняття "Основні уявлення квантової механіки"
- •7.4.2. Лабораторна робота "Застосування фотоелемента для виміру освітленості та визначення його чутливості"
- •7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
- •8.1. Рентгенівські промені
- •8.1.1. Історія відкриття рентгенівських променів, праці і. Пулюя
- •8.1.2. Природа рентгенівських променів і методи їх отримання
- •8.1.3. Гальмівне рентгенівське випромінювання
- •8.1.4. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •8.2. Радіоактивне випромінювання
- •8.2.1. Радіоактивність, її властивості
- •8.2.2. Основний закон радіоактивного розпаду, період напіврозпаду, активність
- •8.2.3. Правила зміщення, особливості спектрів при радіоактивному розпаді
- •8.3. Основи дозиметрії іонізуючого випромінювання
- •8.3.1. Експозиційна доза, її потужність, одиниці
- •8.3.2. Поглинена доза, її потужність, одиниці
- •8.3.3. Еквівалентна доза, її потужність, одиниці
- •8.3.4. Дозиметри іонізуючого випромінювання
- •8.4. Взаємодія іонізуючого випромінювання з речовиною
- •8.4.1. Первинні фізичні механізми взаємодії рентгенівського випромінювання з речовиною
- •8.4.2. Первинні механізми дії радіоактивного випромінювання і потоків частинок на речовину
- •8.4.3. Фізико-хімічні механізми радіаційних пошкоджень
- •8.4.4. Ефект дії малих доз іонізуючого випромінювання
- •8.5. Застосування рентгенівського випромівання в медицині
- •8.5.1. Методи рентгенодіагностики
- •8.5.2. Рентгенотерапія
- •8.5.3. Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •8.5.4. Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •8.5.5. Деякі факти реакції крові на опромінення
- •8.5.6. Опромінення малими дозами великих груп людей
- •8.5.7. Латентний період-час виявлення в організмі порушень, викликаних радіацією
- •8.5.8. Проблеми ризику, пов'язаного із радіаційною дією
- •8.6. Комп'ютерна томографія
- •8.6.1. Рентгенівська томографія
- •8.6.2. Ямр-томографія
- •8.6.3. Позитронна емісійна томографія
- •8.7. Практичне заняття "рентгенівське випромінювання, його застосування"
- •8.8.Практичне заняття "радіоактивне випромінювання та його дія на біооб'єкти"
- •8.9. Лабораторна робота "визначення коефіцієнта лінійного послаблення гамма-випромінювання"
- •8.10. Лабораторна робота "робота з дозиметром дргз-04"
- •1. Призначення дозиметра дргз-04
- •2. Склад приладу
- •3. Характеристики дозиметра дргз-04
- •4. Управління роботою дозиметра дргз-04
- •5. Порядок виконання роботи
4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
Мета роботи: Вивчити природу виникнення концентраційного потенціалу. Ознайомитись з роботою концентраційного елемента і виміряти електрорушійну силу (ЕРС) концентраційного елемента компенсаційним методом.
Питання для підготовки до лабораторної роботи
1. Мембранні потенціали спокою:
а) рівноважний потенціал Нернста;
б) дифузійний потенціал;
в) доннанівський потенціал;
г) стаціонарний потенціал Гольдмана-Ходжкіна-Катца.
2. Компенсаційний метод вимірювання різниці потенціалів.
Додаткова література
1. Владимиров Ю.А. и др. Биофизика. — М.: Медицина, 1983. — Гл. 5, 6,7--С. 95-144, 147-154.
2. Костюк П.Г. и др. Биофизика. — К.: Вища школа, 1988.
3. Ремизов А.Н. Медицинская и биологическая физика. - М.: Висшая школа, 1994. -С. 244-165.
Додаткові теоретичні відомості
Концентраційний потенціал відноситься до типу рівноважних потенціалів. Розглядаючи різні умови руху іонів у просторі, можна одержати різні типи електричних потенціалів.
Рівноважний потенціал Нернста виникає при нерівномірному розподілі концентрації певних іонів у разі, коли мембрана проникна лише для цих іонів, і описується такою формулою:
Доннанівський
потенціал
виникає на мембрані, яка проникна для
малих іонів різних знаківта
непроникна для великих заряджених
молекул (наприклад, білків), розташованих
всередині клітинного простору. Формула
для потенціалу Доннана має такий вигляд:
де-
концентрація білкових аніонів всередині
клітини;
- концентрація неорганічних іонів зовні.
Рис. 4.45. Ілюстрація механізму виникнення концентраційного потенціалу.
Дифузійний
рівноважний потенціал встановлюється
в середовищі при наявності градієнта
концентрацій іонів різного знака, що
мають різну рухливість відповідно до
формули
Концентраційний потенціал виникає при зануренні будь-якого металу у водний розчин власної солі певної концентрації. Така структура становить концентраційний елемент.
Розглянемо
виникнення концентраційного потенціалу
на прикладі концентраційного елемента,
що складається з мідного електрода,
зануреного у розчин мідного купоросу
(рис. 4.45а). Взаємодію електрода з розчином
можна охарактеризувати двома процесами:
а) розчиненням мідного електрода,
зумовленим різницею концентрацій міді
в електроді та розчині (цей процес
описується рівнянням Фіка); перехід
іонів міді у розчин (потік
)
спричинює перерозподіл зарядів і
створення електричного поля; б) існуванням
зворотного потоку іонів міді зумовленого
виникненням градієнта потенціалу.
Рівноважний стан характеризується рівністю цих потоків, тобто умовою, що сумарний потік іонів міді
або
звідки
Інтегруючи
одержане рівняння, з урахуванням значень
концентрацій міді в електроді
і розчині
одержимо
таку величину концентраційного
потенціалу
або
де
-
деяка постійна величина, що
визначається природою електрода та
іонів у розчині.
Якщо занурені в розчини електроди з'єднати провідним соляним містком (рис. 4.45б), то між електродами виникає концентраційна різниця потенціалів
або
Примітка.
Соляний місток (СМ) заповнений агар-агаром
з розчиномУ
цьому середовищі іони
рухаються
з однаковою швидкістю і відповідно
вирівнювання потенціалів розчинів
відбувається без внесення додаткової
дифузійної різниці потенціалів.
У цій роботі вимірюється різниця потенціалів між двома мідними електродами, зануреними в розчини мідного купоросу різних концентрацій (див. рис. 4.45б), тобто електрорушійна сила концентраційного елемента.
Електрорушійна сила джерела електричного струму дорівнює, як відомо, різниці потенціалів між полюсами джерела при розімкненому зовнішньому колі. Для вимірювання електрорушійної сили джерела струму не можна користуватися вольтметром, бо при його увімкненні одержимо замкнене коло, по якому потече струм. Тому електрорушійну силу джерела струму вимірюють методом компенсації.
Рис. 4.46. Електрична схема для вимірювання електрорушійної сили концентраційного елемента методом компенсації.
Для вимірювання електрорушійної сили концентраційного елемента прилади з'єднують так, як показано на рис. 4.46.
Слід
підкреслити, що в точці
реохорда
джерело струму
та
концентраційний елемент
під'єднують однойменними полюсами.
Коло, в яке під'єднані концентраційний
елемент
та
гальванометр, називають вимірювальним.
Можна підібрати таке положення рухливого
контакту реохорда, щоб стрілка
гальванометра
при замиканні вмикача
не відхилялася, що свідчить про відсутність
струму у вимірювальному колі або про
рівність потенціалів точки
реохорда
та точки
на
електроді концентраційного елемента.
Точки
та
також еквіпотенціальні.
У
цьому випадку електрорушійна сила
концентраційного елемента дорівнюватиме
різниці потенціалів на ділянціреохорда,
тобто
Отже,
за законом Ома на ділянці падіння напруги
становить
тобто
При відсутності електричного струму у вимірювальному колі сила струму через реохорд буде такою:
де
-
падіння напруги на всій довжині реохорда,
яке визначаємо за допомогою вольтметра.
Таким
чином, значення
концентраційного
елемента одержимо за формулою
де
-
довжина реохорда;
-
довжина ділянки реохорда, на якій
відбувається компенсація
концентраційного
елемента.
Середню
відносну похибкупри
визначенні
концентраційного елемента розраховують
за формулою
звідки одержать значення абсолютної похибки
Остаточний результат слід подати у такому вигляді:
Усі виміри необхідно повторити три рази і результати занести до таблиці.
Таблиця. Результати вимірів
Порядок виконання роботи
Зібрати електричне коло за схемою, відповідно до рис. 4.46.
Накреслити таблицю для результатів вимірювання і занести до неї необхідні відомості.
Пересуваючи
повзунок реохорда і замикаючи вмикач
досягти нульового відхилення стрілки
гальванометра
(Якщо "нуль" не встановлюється,
слід перемкнути полярність концентраційного
елемента і повторити цю операцію).
Дані
про положення реохорда (довжину ділянкита
показання вольтметра
занести
до таблиці (вимірювання провести не
менше трьох разів).
Розрахувати
середнє значення
концентраційного елемента
використовуючи
середні значення величин, що входять
до формули. Визначити теоретичне значення
за формулою для концентраційної різниці
потенціалів
і порівняти експериментальний та
теоретичний результати.
Зробити висновок про відповідність експериментального та теоретичного результатів, а також про можливі причини їх розходження.
Контрольні питання і задачі
1. Чому концентраційний потенціал є рівноважним? У чому полягає фізична суть рівноважного стану концентраційного елемента?
2. Для наведених на рис. 4.47 розподілів іонів у примембранному просторі і рухливостях іонів вказати величини іонних потоків речовини та іонних струмів, величину, знак і вигляд утвореного мембранногопотенціалу.
Рис. 4.47. Розподіл та рухливість іонів.
3.
Визначити рівноважні потенціали для
іонів
для
мембрани еритроцита, якщо концентрації
цих іонів відповідно дорівнюють:
зовні
всередині