Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Чалий-Мед.і біол. фізика.doc
Скачиваний:
5650
Добавлен:
23.02.2015
Размер:
5.83 Mб
Скачать

4.2.3. Третинна структура

Під третинною структурою білків і нуклеїнових кислот, звичайно, розуміють спосіб просторової укладки поліпептидних і полінуклеотидних ланцюгів в 3-вимірному об'ємі. Відповідь на запитання, як організована третинна структура біополімерів, вимагає застосування прецизійних експериментальних методів дослідження (зокрема, методів рентгеноструктурного аналізу, електронної мікроскопії тощо) та сучасних комп'ютерних технологій обробки цих експериментальних даних.

Уперше третинна структура білкової молекули була визначена Дж. Кендрю для міоглобіна кита-кашалота. Цей білок, що містить в собі 153 амінокислотних залишків, відповідає за перенос кисню в м'язах. Виявилося, що третинна структура поліпептидного ланцюга міоглобіну має вигляд скрученої трубки, що досить щільно укладена навколо гема (рис. 4.10).

Рис. 4.10. Третинна структура Рис. 4.11. Третинна структура білкової молекули міоглобіну. ДНК в еукаріотичних клітинах.

Рис. 4.12. Вплив взаємодій на просторове впорядкування білків.

Що стосується нуклеїнових кислот, то зараз досить багато відомо щодо третинної структури певних типів ДНК та РНК. На рис. 4.11 зображено просторове впорядкування ДНК в еукаріотичних клітинах. Видно, що основний елемент третинної структури утворений своєрідним "соле­ноїдом", який складається з трьох великих витків, що мають діаметр близько

Характер взаємодій, що забезпечують просторове впо­рядкування білків, ілюструє рис. 4.12. Стабілізація третин­ної просторової структури здійснюється як за рахунок ковалентних зв'язків та кулонівських (іон-іонних) взаємо­дій, так і за рахунок нековалентних зв'язків (водневих, дисперсійних, гідрофобних).

4.2.4. Четвертинна структура

Окремі поліпептидні ланцюги, що входять до складу білкової молекули та характеризуються певними первин­ною, вторинною і третинною структурами, можуть мати досить слабкі (нековалентні) зв'язки між собою.

Такі субодиниці (або протомери) можуть об'єднатися між собою з утворенням молекули, яку називають мультимером. Просторове впорядкування протомерів в мультимер називається четвертинною структурою. Звичайно при утворенні четвертинної структури відбувається асоціація (об'єднання) парної кількос­ті протомерів (2 або 4, рідше 6, 8, 10, 12 тощо). Класич­ним прикладом білкової молекули, якій притаманна четвертинна структура, є мо­лекула гемоглобіна, що складається з чотирьох субодиниць (функціонально ак­тивних частин білкового мультимера). Як зазначалося макромолекула, вище, об'єднання цих субодиниць в четвертинну структуру, досягається завдяки гідрофобним взаємодіям.

Мал.4.13 Сферична білкова макромолекула

У кінці цього параграфа розглянемо досить просту і водночас дуже корисну модель Фішера-Бреслера-Талмуда, яка дає змогу передбачити форму білкової макромолекули залежно від відношення гідрофільних і гідрофобних груп, що входять до її складу.

Спочатку знайдемо те співвідношення, виконання якого гарантує сферичну глобулярну структуру білкової макромо­лекули. Нехай радіус сферичної глобули - радіус внут­рішнього гідрофобного ядра -товщина гідрофільного шару -(рис. 4.13). Обчислимо відношення об'ємів гідрофільної та гідрофобної частин в такій сферичній глобулі

(4.9)

де враховані очевидні рівності для площі поверхні гідро­фобного ядрадля об'єму гідрофільного шару завтовшкина цьому ядрідля об'єму самого сферичного гідрофільного ядраа також для радіуса всієї сферичної глобули

Звідси випливає, що для забезпечення сферичної форми білкової макромолекули повинно виконуватися таке співвідношення для параметра що характеризує відно­шення об'ємів гідрофільної та гідрофобної частин:

(4.10)

де - загальний об'єм сферичної макромолекули, а коефіцієнт

Таким чином, на кривій залежності параметра відяка відповідає формулі (4.10), розташовуються білкові макромолекули, що мають сферичну форму (рис. 4.14). Якщо параметрнабуває більшого

значення, ніж те, що визначається формулою (4.10), тобто (область над графікомна рис. 4.14), то білкова макромолекула набуває не сферичної, а еліпсоїдаль­ної (фібрилярної) форми. Причина появи фібрилярної структури полягає в тому, що із зростанням кількості гідрофільних амінокислотних залишків вони прагнуть завдяки диполь-дипольним взаємодіям покрити більшу площу, аніж площа сферичної поверхні, яка є мінімальною за величиною при фіксованому об'ємі.

Рис. 4.14. Можливі форми білкових макромолекул в моделі Фішера-Бреслера-Талмуда.

У тому ж випадку, коли (область під кривою залежностівід, див. рис. 4.14), кількості гідрофільних груп не вистачає навіть для покриття поверхні сферичної глобули. На сферичній поверхні залишаються гідрофобні області, які повинні "заховатися" від полярного оточення. Тому стає детермінованим процес (ймовірність якого прямує до одиниці) об'єднання глобул з утворенням четвертинної структури. Типовим проявом подібного меха­нізму утворення четвертинної структури є молекула гемо­глобіну, що складається, як вже зазначалося, з чотирьох глобул, саме завдяки гідрофобним взаємодіям.

Соседние файлы в предмете Биофизика