
- •Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.
- •1.1. Механічні властивості біологічних тканин
- •1.1.2. Деформація біологічних тканин
- •1.2. Плин в'язких рідин у біологічних системах
- •1.2.1. В'язкість рідини
- •1.2.2. В'язкість крові
- •1.2.3. В'язко-пружні властивості біологічних тканин
- •1.2.4. Основні рівняння руху рідини
- •1.2.5. Критерії механічної подібності рідин, що рухаються
- •1.2.6. Пульсові хвилі
- •1.3. Механічні коливання
- •1.3.1. Гармонічні коливання та їх основні параметри
- •1.3.2. Затухаючі коливання і аперіодичний рух
- •1.3.3. Вимушені коливання
- •1.3.4. Явище резонансу і автоколивання
- •1.3.5. Додавання гармонічних коливань
- •1.4. Механічні хвилі
- •1.4.1. Хвильове рівняння. Поздовжні і поперечні хвилі
- •1.4.2. Потік енергії хвилі. Вектор Умова
- •1.5. Акустика. Елементи фізики слуху. Основи аудіометрії
- •1.5.1. Природа звуку, його основні характеристики (об'єктивні і суб'єктивні)
- •1.5.2. Закон Вебера-Фехнера
- •1.5.3. Ультразвук
- •1.5.4. Інфразвук
- •1.6. Практикум з бюреології
- •1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
- •1.6.2. Лабораторна робота №2 "Визначення коефіцієнта в'язкості"
- •2.1. Електростатика
- •2.1.1. Основні характеристики електричного поля
- •2.1.2. Електричний диполь
- •2.1.3. Діелектрики, поляризація діелектриків
- •2.1.4. Діелектричні властивості біологічних тканин
- •2.1.5. П'єзоелектричний ефект
- •2.2. Постійний струм. Електропровідність біологічних тканин
- •2.2.1. Характеристики електричного струму
- •2.2.2. Електропровідність біологічних тканин ірідин
- •2.2.3. Дія електричного струму на живий організм
- •2.3. Магнітне поле
- •2.3.1. Магнітне поле у вакуумі і його характеристики
- •2.3.2. Закон Біо-Савара-Лапласа
- •2.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •2.3.4. Магнітні властивості речовини
- •2.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •2.4. Електромагнітні коливання
- •2.4.1. Рівняння електричних коливань
- •2.4.2. Вимушені електричні коливання, змінний струм
- •2.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •2.4.4. Імпеданс біологічних тканин
- •2.5. Електромагнітні хвилі
- •2.5.1. Струм зміщення
- •2.5.2. Рівняння Максвелла
- •2.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •2.5.4. Шкала електромагнітних хвиль
- •2.6. Семінар "методика одержання, реєстрації та передачі медико-бюлогічної інформації"
- •2.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •2.6.3. Осцилографи, генератори, підсилювачі, датчики
- •2.7. Лабораторний практикум
- •2.7.1. Лабораторна робота №1 "Визначення величини артеріального тиску за допомогою ємнісного датчика"
- •2.7.2. Лабораторна робота №2 "Напівпровідниковий діод"
- •2.7.3. Лабораторна робота №3 "Вивчення роботи транзистора"
- •2.7.4. Лабораторна робота №4 "Електрофоретичний метод визначення рухливості іонів"
- •3.1. Загальні відомості про електронну медичну апаратуру (ема)
- •3.1.1. Класифікація електронної медичної апаратури
- •3.1.2. Техніка безпеки
- •3.1.3. Правила безпеки
- •3.1.4. Технічні характеристики ема
- •3.2. Семінар "взаємодія електромагнітного поля з біологічними тканинами"
- •3.2.1. Основні характеристики емп
- •3.2.2. Основні процеси, які характеризують дію емп на біологічні тканини
- •3.2.3. Теплова дія емп на бт
- •3.2.4. Специфічна дія емп на біологічні тканини
- •3.3. Лабораторна робота №1 "робота з фізіотерапевтичною апаратурою"
- •3.3.1. Робота з увч-апаратом
- •3.3.2. Ультразвуковий терапевтичний апарат
- •3.3.3. Апарат для дарсонвалізації"Іскра-1"
- •3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
- •3.4.1. Природа електрокардіограми (екг)
- •3.4.2. Завдання до лабораторної роботи
- •3.5. Лабораторна робота №3 "робота з реографом ргч-01"
- •3.5.1. Додаткові теоретичні відомості
- •3.5.2. Стислі технічні характеристики та інструкція з експлуатації реографа ргч-01
- •4.1. Міжмолекулярні взаємодії у біополімерах
- •4.1.1. Класифікація взаємодій у біополімерах
- •4.2. Структурна організація білків та нуклеїнових кислот
- •4.2.1. Первинна структура
- •4.2.2. Вторинна структура
- •4.2.3. Третинна структура
- •4.2.4. Четвертинна структура
- •4.3. Будова і властивості біологічних мембран
- •4.4. Пасивний та активний транспорт речовин крізь мембранні структури клітин
- •4.4.1. Пасивний транспорт незаряджених молекул
- •4.4.2. Пасивний транспорт іонів
- •4.4.3. Активний транспорт
- •4.5. Біологічні потенціали
- •4.5.1. Рівноважний мембранний потенціал Нернста
- •4.5.2. Дифузійний потенціал
- •4.5.3. Потенціал Доннана. Доннанівська рівновага
- •4.5.4. Стаціонарний потенціал Гольдмана-Ходжкіна-Катца
- •4.5.5. Потенціал дії. Механізм виникнення та поширення нервового імпульсу
- •4.6. Лабораторний практикумі
- •4.6.1. Лабораторна робота "Дослідження нелінійних властивостей провідності шкіри жаби"
- •4.6.2. Лабораторна робота "Дослідження дисперсії електричного імпедансу біологічних тканин"
- •4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
- •4.6.4. Практичне заняття "Вивчення біофізики мембран за допомогою комп'ютерних програм"
- •5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
- •5.2. Основи термодинаміки незворотних процесів
- •5.2.1. Лінійний закон
- •5.2.2. Принцип симетрії кінетичних коефіцієнтів і виробництво ентропії
- •5.2.3. Спряження потоків у біологічних системах
- •5.2.4. Стаціонарний стан відкритих систем і теорема Пригожина щодо мінімуму виробництва ентропії
- •5.3. Відкриті медико-бюлогічні системи, що знаходяться далеко від рівноваги (елементи синергетики)
- •5.4. Моделювання процесів у складних медико-бюлопчних системах
- •5.5. Практичне заняття "термодинаміка відкритих біологічних систем"
- •6.1. Інтерференція світла
- •6.1.1. Інтерференція від двох когерентних світлових джерел
- •6.1.2. Історія відкриття явища просвітлення оптики, праці о. Смакули
- •6.1.3. Інші застосування явища інтерференції світла
- •6.2. Дифракція світла
- •6.2.1. Дифракція на щілині в паралельних променях
- •6.2.2. Дифракційна решітка
- •6.2.3. Голографія та її застосування в медицині
- •6.3. Геометрична оптика
- •6.3.1. Ідеальна центрована оптична система
- •6.3.2. Похибки оптичних систем
- •6.3.3. Оптична мікроскопія
- •6.4. Поляризація світла
- •6.4.1. Поляризація світла при відбиванні та заломленні
- •6.4.2. Поляризація при подвійному променезаломленні в кристалах
- •6.4.3. Поляризація світла при проходженні крізь поглинаючі анізотропні речовини
- •6.5. Взаємодія світла з речовиною
- •6.5.1. Дисперсія світла
- •6.5.2. Поглинання світла
- •6.5.3. Розсіяння світла
- •6.6. Фізичні основи термографії, закони теплового випромінювання
- •6.6.1. Закон Кірхгофа
- •6.6.2. Закон випромінювання Планка
- •6.6.3. Закон Стефана-Больцмана
- •6.6.4. Закон зміщення Віна
- •6.6.5. Випромінювання Сонця
- •6.6.6. Інфрачервоне випромінювання
- •6.6.7. Ультрафіолетове випромінювання
- •6.7. Біофізичні основи зорової рецепції
- •6.8. Лабораторний практикум
- •6.8.1. Лабораторна робота "Вивчення мікроскопа та вимірювання мікрооб'єктів"
- •6.8.2. Лабораторна робота "Визначення концентрації розчинів рефрактометричним методом"
- •7.1.1. Місце квантової механіки в системі наук про рух тіл
- •7.1.2. Гіпотеза де Бройля
- •7.1.3. Співвідношення невизначеностей Гейзенберга
- •7.1.4. Основне рівняння квантової механіки - рівняння Шредінгера
- •7.2. Випромінювання та поглинання енергії атомами та молекулами
- •7.2.1. Атомні спектри
- •7.2.2. Молекулярні спектри
- •7.3. Електронний парамагнітний резонанс,
- •7.3.1. Метод електронного парамагнітного резонансу
- •7.3.2. Метод спінових міток (спінових зондів)
- •7.3.3. Спін-імунологічний метод
- •7.3.4. Метод ядерного магнітного резонансу
- •7.4. Практикум 3 квантової механіки
- •7.4.1. Практичне заняття "Основні уявлення квантової механіки"
- •7.4.2. Лабораторна робота "Застосування фотоелемента для виміру освітленості та визначення його чутливості"
- •7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
- •8.1. Рентгенівські промені
- •8.1.1. Історія відкриття рентгенівських променів, праці і. Пулюя
- •8.1.2. Природа рентгенівських променів і методи їх отримання
- •8.1.3. Гальмівне рентгенівське випромінювання
- •8.1.4. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •8.2. Радіоактивне випромінювання
- •8.2.1. Радіоактивність, її властивості
- •8.2.2. Основний закон радіоактивного розпаду, період напіврозпаду, активність
- •8.2.3. Правила зміщення, особливості спектрів при радіоактивному розпаді
- •8.3. Основи дозиметрії іонізуючого випромінювання
- •8.3.1. Експозиційна доза, її потужність, одиниці
- •8.3.2. Поглинена доза, її потужність, одиниці
- •8.3.3. Еквівалентна доза, її потужність, одиниці
- •8.3.4. Дозиметри іонізуючого випромінювання
- •8.4. Взаємодія іонізуючого випромінювання з речовиною
- •8.4.1. Первинні фізичні механізми взаємодії рентгенівського випромінювання з речовиною
- •8.4.2. Первинні механізми дії радіоактивного випромінювання і потоків частинок на речовину
- •8.4.3. Фізико-хімічні механізми радіаційних пошкоджень
- •8.4.4. Ефект дії малих доз іонізуючого випромінювання
- •8.5. Застосування рентгенівського випромівання в медицині
- •8.5.1. Методи рентгенодіагностики
- •8.5.2. Рентгенотерапія
- •8.5.3. Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •8.5.4. Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •8.5.5. Деякі факти реакції крові на опромінення
- •8.5.6. Опромінення малими дозами великих груп людей
- •8.5.7. Латентний період-час виявлення в організмі порушень, викликаних радіацією
- •8.5.8. Проблеми ризику, пов'язаного із радіаційною дією
- •8.6. Комп'ютерна томографія
- •8.6.1. Рентгенівська томографія
- •8.6.2. Ямр-томографія
- •8.6.3. Позитронна емісійна томографія
- •8.7. Практичне заняття "рентгенівське випромінювання, його застосування"
- •8.8.Практичне заняття "радіоактивне випромінювання та його дія на біооб'єкти"
- •8.9. Лабораторна робота "визначення коефіцієнта лінійного послаблення гамма-випромінювання"
- •8.10. Лабораторна робота "робота з дозиметром дргз-04"
- •1. Призначення дозиметра дргз-04
- •2. Склад приладу
- •3. Характеристики дозиметра дргз-04
- •4. Управління роботою дозиметра дргз-04
- •5. Порядок виконання роботи
3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
Мета роботи: вивчити фізичні основи електрокардіографії, набути навички роботи з електрокардіографом.
Контрольні питання до лабораторної роботи
1. Поняття про електрограму (ЕГ). Види ЕГ.
2. Серце як електричний диполь та інтегральний електричний вектор серця (ІЕВ). Електричне поле диполя. Теорія Ейнтховена. Стандартна система відведень.
3. Поняття про вектор-електрокардіографію.
4. Серце як струмовий диполь. Потенціал поля струмового диполя.
5. Спрощена блок-схема електрокардіографа. Поняття про диференційний підсилювач. Принцип зниження шумів. Електроди для зняття ЕГ.
Література для підготовки до лабораторної роботи
1. Ремизов А.Н. Медицинская и биологическая физика. - М.: Высшая школа, 1992.
2. Владимиров Ю.А. и др. Биофизика. - М.: Высшая школа. - Гл. 9 (разделы 1-7).
3. Ремизов А.Н. Медицинская и биологическая физика. - М.: Высшая школа, 1987. - Гл. 14 (разделы 1-5), гл. 21 (разделы 2, 6), гл. 22 (разделы 1-5).
4. Ремизов А.Н. Курс физики, электроники, кибернетики для медицинских институтов. - М.: Высшая школа, 1982. - Гл. 15 (разделы 1, 3, 4).
Додаткові теоретичні відомості
Органи, тканини, окремі клітини та їхні частини володіють електричною активністю, тобто процес їхнього функціонування супроводжується появою в навколишньому середовищі змінного електричного поля, характеристики якого (різницю потенціалів, величину електричного струму тощо) можна зареєструвати. Отриману інформацію використовують з діагностичною метою та з метою вивчення природи електричних явищ у біологічних тканинах. Реєстрація різниці потенціалів між точками середовища, яке оточує електричко активні тканини, називається електрографією, а результат цієї реєстрації -електрограмою (ЕГ).
3.4.1. Природа електрокардіограми (екг)
І концепція - серце як електричний диполь (теорія Ейнтховена). Основні положення теорії Ейнтховена.
1.
Серце являє собою диполь. Збуджена
ділянка міокарда заряджена негативно
по відношенню до незбудженої ділянки
(мал. 3.11). Такий розподіл заряду
еквівалентний дипольній системі
зарядів, яку можна характеризувати
інтегральним електричним вектором
серця
Мал. 3.11. Серце як електричний диполь.
2.
Диполь розміщений в однорідному
діелектрику, тобто струми в такому
середовищі відсутні, і електричне поле
розглядається як статичне. Величина
потенціалу в кожній достатньо віддаленій
точці середовища
дорівнює:
3. Вибір стандартної системи відведень. Ейнтховен запропонував знімати різницю потенціалів між вершинами рівностороннього трикутника, у центрі якого знаходиться вектор Р (мал. 3.12). Можна показати, що в цьому випадку різниці потенціалів між вершинами трикутника пропорційні до відповідних проекцій вектора Р на сторони трикутника:
Мал. 3.12.
Кожна
з цих проекцій відповідає одному з
стандартних відведень, прийнятих в
електрокардіографії (в цьому випадку
це -
стандартні відведення, для яких
положення точки
відповідає
положенню електрода на правій руці,
-
на лівій,
- на лівій нозі). Використання інших
електродів (нейтрального - на правій
нозі і грудного, який накладається у
відповідній точці грудної клітини)
дозволяє використовувати також інші
типи стандартних відведень, їх є в
кардіології понад два десятки.
Основним недоліком цієї концепції є твердження, що тканини, які оточують серце, - діелектрики, тобто обчислення потенціалу будь-якої точки середовища за вищевказаною формулою є некоректним.
II концепція - серце як сукупність струмових електричних генераторів, які знаходяться в електропровідному середовищі.
Мал. 3.13. Мал. 3.14. Мал. 3.15.
1.
Еквівалентна схема струмового генератора
(струмового диполя) представлена на
мал. 3.13. Тут
- відповідно внутрішній опір генератора
і опір зовнішнього середовища. Для
струмового генератора
отже,
тобто величина струму не залежить від
опору середовища.
2.
Струмовий дипольний момент
де
-
сила струму,
-
вектор, який з'єднує полюси диполя.
Позитивний полюс називають джерелом
(витоком), негативний -відтоком. Напрямок
вектора
показано
на мал. 3.15.
3.
Потенціал поля струмового уніполя в
однорідному середовищі
(мал. 3.14). Користуючись законом Ома в
диференційній формі, означенням густини
струму
і тим, що у даному випадку
-
площа поверхні сфери радіусом
знайдемо:
4. Потенціал електричного поля, створеного струмовим диполем. Використовуючи принцип суперпозиції, знайдемо потенціал точки як суму потенціалів двох уніполів (джерела та відтоку):
Якщо
тоді останню формулу, яка визначає
вели-
чину дипольного потенціалу, зручно представити через величину дипольного моменту
5.
Збуджений міокард розглядається як
сукупність струмових диполів .кожен
з яких призводить до виникнення дипольного
потенціалу
в деякій точці
6.
Потенціал електричного поля серця
складається з потенціалів, створених
окремими елементарними диполями.
Приймаючи обмеження: провідне середовище
є однорідним
відстань г значно більша, ніж
тобто розміри області збудження значно
менші від розмірів тіла, цей потенціал
можна наближено знайти у вигляді
де
- загальна кількість диполів,
- відстань від центру струмового диполя
до точки відведення,
-
питомий опір середовища. Вираз
являє собою еквівалентний диполь серця,
він інтегрально відображає розповсюдження
струмів збудження у локальній ділянці
міокарда. Тоді потенціал електричного
поля серця можна подати у вигляді:
,
де
-
кут між вектором
і напрямком