Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Чалий-Мед.і біол. фізика.doc
Скачиваний:
5665
Добавлен:
23.02.2015
Размер:
5.83 Mб
Скачать

2.6.3. Осцилографи, генератори, підсилювачі, датчики

Електронний осцилограф - прилад, який використо­вується для дослідження періодичних та аперіодичних про­цесів. За його допомогою можна спостерігати криві періодичного процесу, вимірювати напругу, фазу, глибину модуляції.

Блок-схема найпростішого осцилографа представле­на на мал. 2.47 і містить: електронно-променеву трубку (ЕПТ); блок живлення (БЖ), генератор горизонтальної роз­гортай (ГР), який подає пилкоподібну напругу, підсилювач вертикального відхилення (Підс¥), який дозволяє збільшувати амплітуду досліджуваного сигналу, блок син­хронізації (БС), дільники напруги.

До складу електронно-променевої трубки, яка являє собою вакуумну колбу, входить ряд електродів (електронна гармата), котрі фокусують пучок на екрані трубки і надають електронам необхідну швидкість (мал. 2.48).

Мал. 2.47. Мал. 2.48.

Крім вказаних електродів, у трубці знаходяться верти­кально (Y) і горизонтально (X) відхиляючі пластини, а та­кож електрод завдяки якому відводять електрони, що накопичуються на екрані.

Блок синхронізації. Частота генератора не зовсім ста­більна з ряду причин - флуктуації напруги й опору залежно від змін навколишніх умов та інших причин. Джерела досліджуваних сигналів також не стабільні. Це приводить до нестійкості осцилограми. Для усунення цього недоліку генератор горизонтальної розгортки узгоджують з дослід­жуваним сигналом, примушуючи їх працювати синхронно. Цю функцію в електронному осцилографі виконує блок синхронізації.

Блок живлення. Забезпечує необхідну постійну напру­гу на електродах електронно-променевої трубки. До катода трубки прикладається негативна напруга більше 1000 В, а до анода - позитивна напруга до 5 кВ. Блок забезпечує та­кож живлення нитки розжарення електронно-променевої трубки.

Генератор розгортки. Для виявлення на екрані елек­тронно-променевої труб­ки осцилограм необхідно на горизонтальний вхід осцилографа подати пил­коподібну регульовану за амплітудою і часто­тою напругу. На мал. 2.49 показана така на­пруга: - час наростан­ня напруги ,- час спаду напруги, Т - період ко­ливання. В ідеальній системідорівнює нулю.

Для спостереження синусоїдальних коливань (напруг) служить неперервна розгортка. Якщо спостерігаються про­цеси, які повторюються через неоднакові проміжки часу чи мають вигляд аперіодичних або одноразових імпульсів, то тривалість розгортки повинна бути трохи більшою, ніж тривалість досліджуваного сигналу. Такі розгортки назива­ються очікуючими чи одноразовими. Генератори такої роз­гортки приводяться в дію за допомогою зовнішнього пус­кового сигналу, під дією якого генератор очікуючої роз­гортки створює тільки один пилкоподібний імпульс. Часто генератор очікуючої розгортай сам виробляє сигнал, тоді відпадає необхідність синхронізації.

Генератор міток часу. Сучасні осцилографи високого класу мають генератор міток часу або калібратор тривалос­ті. Короткі імпульси цього генератора певної частоти підсилюються і подаються на модулятор. Позитивний по­тенціал модулятора утворює на осцилограмі ряд яскравих точок, негативний - утворює ряд менш яскравих, ніж осци­лограми, точок. Точність визначення тривалості процесів зростає зі збільшенням кількості відміток часу на осцило­грамі.

Генератор калібрувального сигналу. Щоб вимірювати напругу, необхідно порівняти досліджуваний сигнал із сиг­налом каліброваної напруги - тобто такої, що має точно ви­значену величину. Для її отримання в осцилографі існує спеціальний генератор, який працює від стабілізатора на­пруги. За допомогою калібрувального сигналу визначають ціну поділки або, якщо сітка екрана проградуйована, перевіряють правильність роботи приладу. Генератор калібрувального сигналу є не тільки в осцило­графі, а і в більшості вимірювальних приладів (цифрових вольтметрах, реографах, кардіографах тощо).

Отримання осцилограм. На екрані електронно-проме­невої трубки буде видно вертикальну світну лінію, якщо на вертикально відхилюючі пластини (X) подати змінну напру­гу. Якщо змінну напругу подати на горизонтально відхи­люючі пластини (У), то на екрані трубки буде горизонталь­на лінія. Якщо ж змінну напругу одночасно подати на вер­тикально та горизонтально відхилюючі пластини, то на ек­рані буде осцилограма, вигляд якої залежатиме від співвід­ношення частот, амплітуд і фаз сигналів, які подані на пла­стини X та Y.

Для того щоб отримати стійку осцилограму на екрані електронно-променевої трубки, необхідно на У-пластини подавати досліджувану напругу, а на X - пилкоподібну на­пругу. Частоти цих напруг повинні бути або рівними або кратними одна одній.

Отже, основними параметрами ЕО є:

1. Чутливість S електронно-променевої трубки - відно­шення зміщення електронного променя (в мм) до величини напруги (у Вольтах) на відхиляючих пластинах, якою вик­ликане це зміщення:

2. Коефіцієнт підсилення за напругою К, який дорівнює відношенню амплітуди напруги на виході до амплітуди вхідного сигналу відповідного підсилювача (Х чи Y):

3. Частотна смуга пропускання підсилювачів. Підсилення і генерація електричних сигналів

Підсилювачами електричних сигналів називають при­строї, які збільшують ці сигнали за рахунок енергії сторон­нього джерела.

Залежно від призначення розрізняють підсилювачі на­пруги, сили струму, потужності. Основною характеристи­кою підсилювача є коефіцієнт підсилення, який дорівнює відношенню зміни вихідного сигналу до зміни вхідного, якою вона обумовлена:

При підсиленні синусоїдальних сигналів, як правило, користуються відношенням амплітуд вхідного і вихідного сигналів:

де - амплітуда підсилюваної величини (I, U, Р). Суттє­вою вимогою до підсилювачів є повторення вхідного сиг­налу без спотворення його форми. Для цього необхідно, щоб коефіцієнт підсилення не залежав від величини вхідного сигналу, тобто, щоб залежність яку називають амплітудною характеристикою, була ліній­ною.

Варто відзначити, що індуктивні та ємнісні властивості провідників, наскільки малими вони б не були, при збіль­шенні частоти можуть сутгєво впливати на коефіцієнт під­силення, викликаючи так звані частотні спотворення. Не­обхідною умовою їх відсутності є постійність коефіцієнта підсилення Діапазон частот для якого це справедливе, називають смугою пропускання підсилювача.

Принцип дії конкретного підсилювача розглядається у лабораторній роботі "Вивчення роботи транзистора".

Для досягнення необхідних значень досліджуваного сигналу сполучають іноді декілька підсилювачів, які утво­рюють каскад підсилення.

Генераторами називають пристрої, які перетворюють

енергію джерел постійної ЕРС в енергію електромагнітних хвиль різної частоти та форми. Генератори використовуються в фізіотерапевтичній апара­турі, електричних стимулято­рах, в окремих діагностичних приладах.

Мал. 2.50.

Схему найпростішого автоколивального генератора на транзисторі зображено на мал. 2.50. В схемі генеруються коливання, частота яких дорівнює частоті власних коливань LC контура: . Котушказдійснює індуктивний зв'язок кола емітер-база з колом емітер-колектор. Джерелом енергії служить батареяЕлементинеобхідні для вибору оптимального режиму роботи (щоб була лінійною амплітудна характеристика і частота генераціївідповіда­ла смузі пропускання).

Поряд з автоколивальними генераторами, які виробля­ють сигнали синусоїдальної форми, використовуються генератори із зовнішнім збудженням. За допомогою них можна отримувати періодичні імпульсні послідовності (релаксаційні коливання). Прикладом таких генераторів є генератор пилко­подібної напруги в осцилографі; мультивібратор, який вико­ристовують для імітації роботи серця при дослідженні кардіограми.

Електроди та датчики медико-біологічної інформації

Датчиком називають пристрій, який перетворює вели­чину, що вимірюється чи спостерігається, в сигнал, зручний для передачі (як правило, електромагнітний сигнал). Датчи­ки поділяються на генераторні та параметричні.

Генераторні - це датчики, які під дією електровимірю­вальної величини безпосередньо генерують сигнал елек­тромагнітної природи. Основними типами цих датчиків є п'єзоелектричні, термоелектричні, індукційні, фотоелек­тричні.

Параметричні - це датчики, в яких під дією вимірюва­ної величини змінюється деякий параметр. Основні їх типи: ємнісні, індуктивні, омічні.

Датчик характеризується функцією перетворення, тоб­то функціональною залежністю вихідної величини від вхідної X, яка задається або аналітичнеабо графічно.

Чутливість датчика показує, в якій мірі вихідна вели­чина реагує на зміни вхідної:

Суттєву роль відіграє інерційність датчика, яка обу­мовлена тривалістю фізичного процесу, що відбувається в датчику й призводить до запізнення змін вихідної величини відносно змін вхідної.

Електроди - це провідники, що з'єднують біологічну систему з вимірювальним колом або колом, за допомогою якого подається електромагнітний сигнал на біооб'єкт.

Електроди мають задовольняти цілому ряду вимог. Во­ни повинні легко зніматись і закріплюватись, мати стабільні електричні параметри, не створювати шумів, не подразню­вати біологічну тканину.

Структурна схема кола для одерження, передачі І реєстрації медико-біологічної інформації

Структурна схема кола для одерження, передачі і ре­єстрації медико-біологічної інформації зображена на мал. 2.51.

Мал. 2.51.

Припустимо, що Xдеякий параметр біологічної сис­теми, який потрібно визначити;- величина, яка отри­мується на реєструючому пристрої. Для обчислення повин­на бути відомою залежністьа також значення ко­ефіцієнта підсиленняза даних умов.

Завдання для перевірки кінцевого рівня знань

1. Визначити ціну поділки приладів (в ^/поділку і fi/поділку) для різних меж вимірювання:Прилад має 20 поділок.

2. Визначити максимальну відносну похибку для цих приладів, якщо клас точності: а) 1; б) 2.

3. Амперметр має 25 поділок і розрахований на вимірювання сили струмуКлас точності 1. Знайти відносну похибку, якщо стрілка вказує на 5, 15, 20 поділок. Зробити висновок.

4. Чому дорівнює невідомий опір в схемі, зображеній на мал. 2.44, якщо

5. Назвіть основні блоки осцилографа.

6. Яким вимогам повинна задовольняти напруга, що подасться на X-пластини осцилографа і чому?

7. Що таке калібрувальний сигнал і для чого він використовується?

8. На які пластини осцилографа подається досліджувана напруга?

9. Які електричні величини можна виміряти за допомогою осцилог­рафа?

10. Що таке чутливість приладу?

11. За якими параметрами оцінюють підсилювач?

12. Що таке дільник напруги і де він використовується?

13. Знайти потенціал поля, створеного диполем в точці, віддаленій на відстань в напрямку під кутом 30 відносно напрямку Середовище – кров

14. Через поперечний переріз провідника проходять електрони зі швидкістю Концентрація електронів

Знайти густину струму. Знайти силу струму, створеного цими зарядами, якщо переріз провідника

15. Який максимальний момент сили діє на молекулу води в електричному полі з напруженістю якщо для моле­кул води дипольний момент ?

16. Знайти максимальне значення ЕРС, яка індукується в рамці площею , якщо магнітна індукція має максимальне значення і змінюється за гармонічним законом з періодом

17. Знайти напруженість магнітного поля в центрі півкільця раді­усом 2 м, по якому тече струм силою 5 А.

18. В однорідному магнітному полі з індукцієюзнахо­диться прямолінійний провідник завдовжки 1.4 м, на який діє си­ла 2.1 Н. Визначити кут між напрямком струму в провіднику і напрямком магнітного поля, якщо сила струму в провіднику 12 А.

19. На відстані 3 см від прямолінійного нескінченно довгого про­відника зі струмом індукція магнітного поля дорівнює Знайти силу струму в провіднику.

20. Соленоїд завдовжки 60 см має три шари витків по 120 витків в кожному шарі. Знайти силу струму, котрий живить соленоїд, якщо індукція поля на осі соленоїда

21. Потік протонів, прискорених різницею потенціалів влітає в однорідне магнітне поле напруженістюШвидкість частинок перпендикулярна до напрямку магнітного поля. Знайти силу, що діє на кожний із протонів.

Соседние файлы в предмете Биофизика