
- •Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.
- •1.1. Механічні властивості біологічних тканин
- •1.1.2. Деформація біологічних тканин
- •1.2. Плин в'язких рідин у біологічних системах
- •1.2.1. В'язкість рідини
- •1.2.2. В'язкість крові
- •1.2.3. В'язко-пружні властивості біологічних тканин
- •1.2.4. Основні рівняння руху рідини
- •1.2.5. Критерії механічної подібності рідин, що рухаються
- •1.2.6. Пульсові хвилі
- •1.3. Механічні коливання
- •1.3.1. Гармонічні коливання та їх основні параметри
- •1.3.2. Затухаючі коливання і аперіодичний рух
- •1.3.3. Вимушені коливання
- •1.3.4. Явище резонансу і автоколивання
- •1.3.5. Додавання гармонічних коливань
- •1.4. Механічні хвилі
- •1.4.1. Хвильове рівняння. Поздовжні і поперечні хвилі
- •1.4.2. Потік енергії хвилі. Вектор Умова
- •1.5. Акустика. Елементи фізики слуху. Основи аудіометрії
- •1.5.1. Природа звуку, його основні характеристики (об'єктивні і суб'єктивні)
- •1.5.2. Закон Вебера-Фехнера
- •1.5.3. Ультразвук
- •1.5.4. Інфразвук
- •1.6. Практикум з бюреології
- •1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
- •1.6.2. Лабораторна робота №2 "Визначення коефіцієнта в'язкості"
- •2.1. Електростатика
- •2.1.1. Основні характеристики електричного поля
- •2.1.2. Електричний диполь
- •2.1.3. Діелектрики, поляризація діелектриків
- •2.1.4. Діелектричні властивості біологічних тканин
- •2.1.5. П'єзоелектричний ефект
- •2.2. Постійний струм. Електропровідність біологічних тканин
- •2.2.1. Характеристики електричного струму
- •2.2.2. Електропровідність біологічних тканин ірідин
- •2.2.3. Дія електричного струму на живий організм
- •2.3. Магнітне поле
- •2.3.1. Магнітне поле у вакуумі і його характеристики
- •2.3.2. Закон Біо-Савара-Лапласа
- •2.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •2.3.4. Магнітні властивості речовини
- •2.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •2.4. Електромагнітні коливання
- •2.4.1. Рівняння електричних коливань
- •2.4.2. Вимушені електричні коливання, змінний струм
- •2.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •2.4.4. Імпеданс біологічних тканин
- •2.5. Електромагнітні хвилі
- •2.5.1. Струм зміщення
- •2.5.2. Рівняння Максвелла
- •2.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •2.5.4. Шкала електромагнітних хвиль
- •2.6. Семінар "методика одержання, реєстрації та передачі медико-бюлогічної інформації"
- •2.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •2.6.3. Осцилографи, генератори, підсилювачі, датчики
- •2.7. Лабораторний практикум
- •2.7.1. Лабораторна робота №1 "Визначення величини артеріального тиску за допомогою ємнісного датчика"
- •2.7.2. Лабораторна робота №2 "Напівпровідниковий діод"
- •2.7.3. Лабораторна робота №3 "Вивчення роботи транзистора"
- •2.7.4. Лабораторна робота №4 "Електрофоретичний метод визначення рухливості іонів"
- •3.1. Загальні відомості про електронну медичну апаратуру (ема)
- •3.1.1. Класифікація електронної медичної апаратури
- •3.1.2. Техніка безпеки
- •3.1.3. Правила безпеки
- •3.1.4. Технічні характеристики ема
- •3.2. Семінар "взаємодія електромагнітного поля з біологічними тканинами"
- •3.2.1. Основні характеристики емп
- •3.2.2. Основні процеси, які характеризують дію емп на біологічні тканини
- •3.2.3. Теплова дія емп на бт
- •3.2.4. Специфічна дія емп на біологічні тканини
- •3.3. Лабораторна робота №1 "робота з фізіотерапевтичною апаратурою"
- •3.3.1. Робота з увч-апаратом
- •3.3.2. Ультразвуковий терапевтичний апарат
- •3.3.3. Апарат для дарсонвалізації"Іскра-1"
- •3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
- •3.4.1. Природа електрокардіограми (екг)
- •3.4.2. Завдання до лабораторної роботи
- •3.5. Лабораторна робота №3 "робота з реографом ргч-01"
- •3.5.1. Додаткові теоретичні відомості
- •3.5.2. Стислі технічні характеристики та інструкція з експлуатації реографа ргч-01
- •4.1. Міжмолекулярні взаємодії у біополімерах
- •4.1.1. Класифікація взаємодій у біополімерах
- •4.2. Структурна організація білків та нуклеїнових кислот
- •4.2.1. Первинна структура
- •4.2.2. Вторинна структура
- •4.2.3. Третинна структура
- •4.2.4. Четвертинна структура
- •4.3. Будова і властивості біологічних мембран
- •4.4. Пасивний та активний транспорт речовин крізь мембранні структури клітин
- •4.4.1. Пасивний транспорт незаряджених молекул
- •4.4.2. Пасивний транспорт іонів
- •4.4.3. Активний транспорт
- •4.5. Біологічні потенціали
- •4.5.1. Рівноважний мембранний потенціал Нернста
- •4.5.2. Дифузійний потенціал
- •4.5.3. Потенціал Доннана. Доннанівська рівновага
- •4.5.4. Стаціонарний потенціал Гольдмана-Ходжкіна-Катца
- •4.5.5. Потенціал дії. Механізм виникнення та поширення нервового імпульсу
- •4.6. Лабораторний практикумі
- •4.6.1. Лабораторна робота "Дослідження нелінійних властивостей провідності шкіри жаби"
- •4.6.2. Лабораторна робота "Дослідження дисперсії електричного імпедансу біологічних тканин"
- •4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
- •4.6.4. Практичне заняття "Вивчення біофізики мембран за допомогою комп'ютерних програм"
- •5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
- •5.2. Основи термодинаміки незворотних процесів
- •5.2.1. Лінійний закон
- •5.2.2. Принцип симетрії кінетичних коефіцієнтів і виробництво ентропії
- •5.2.3. Спряження потоків у біологічних системах
- •5.2.4. Стаціонарний стан відкритих систем і теорема Пригожина щодо мінімуму виробництва ентропії
- •5.3. Відкриті медико-бюлогічні системи, що знаходяться далеко від рівноваги (елементи синергетики)
- •5.4. Моделювання процесів у складних медико-бюлопчних системах
- •5.5. Практичне заняття "термодинаміка відкритих біологічних систем"
- •6.1. Інтерференція світла
- •6.1.1. Інтерференція від двох когерентних світлових джерел
- •6.1.2. Історія відкриття явища просвітлення оптики, праці о. Смакули
- •6.1.3. Інші застосування явища інтерференції світла
- •6.2. Дифракція світла
- •6.2.1. Дифракція на щілині в паралельних променях
- •6.2.2. Дифракційна решітка
- •6.2.3. Голографія та її застосування в медицині
- •6.3. Геометрична оптика
- •6.3.1. Ідеальна центрована оптична система
- •6.3.2. Похибки оптичних систем
- •6.3.3. Оптична мікроскопія
- •6.4. Поляризація світла
- •6.4.1. Поляризація світла при відбиванні та заломленні
- •6.4.2. Поляризація при подвійному променезаломленні в кристалах
- •6.4.3. Поляризація світла при проходженні крізь поглинаючі анізотропні речовини
- •6.5. Взаємодія світла з речовиною
- •6.5.1. Дисперсія світла
- •6.5.2. Поглинання світла
- •6.5.3. Розсіяння світла
- •6.6. Фізичні основи термографії, закони теплового випромінювання
- •6.6.1. Закон Кірхгофа
- •6.6.2. Закон випромінювання Планка
- •6.6.3. Закон Стефана-Больцмана
- •6.6.4. Закон зміщення Віна
- •6.6.5. Випромінювання Сонця
- •6.6.6. Інфрачервоне випромінювання
- •6.6.7. Ультрафіолетове випромінювання
- •6.7. Біофізичні основи зорової рецепції
- •6.8. Лабораторний практикум
- •6.8.1. Лабораторна робота "Вивчення мікроскопа та вимірювання мікрооб'єктів"
- •6.8.2. Лабораторна робота "Визначення концентрації розчинів рефрактометричним методом"
- •7.1.1. Місце квантової механіки в системі наук про рух тіл
- •7.1.2. Гіпотеза де Бройля
- •7.1.3. Співвідношення невизначеностей Гейзенберга
- •7.1.4. Основне рівняння квантової механіки - рівняння Шредінгера
- •7.2. Випромінювання та поглинання енергії атомами та молекулами
- •7.2.1. Атомні спектри
- •7.2.2. Молекулярні спектри
- •7.3. Електронний парамагнітний резонанс,
- •7.3.1. Метод електронного парамагнітного резонансу
- •7.3.2. Метод спінових міток (спінових зондів)
- •7.3.3. Спін-імунологічний метод
- •7.3.4. Метод ядерного магнітного резонансу
- •7.4. Практикум 3 квантової механіки
- •7.4.1. Практичне заняття "Основні уявлення квантової механіки"
- •7.4.2. Лабораторна робота "Застосування фотоелемента для виміру освітленості та визначення його чутливості"
- •7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
- •8.1. Рентгенівські промені
- •8.1.1. Історія відкриття рентгенівських променів, праці і. Пулюя
- •8.1.2. Природа рентгенівських променів і методи їх отримання
- •8.1.3. Гальмівне рентгенівське випромінювання
- •8.1.4. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •8.2. Радіоактивне випромінювання
- •8.2.1. Радіоактивність, її властивості
- •8.2.2. Основний закон радіоактивного розпаду, період напіврозпаду, активність
- •8.2.3. Правила зміщення, особливості спектрів при радіоактивному розпаді
- •8.3. Основи дозиметрії іонізуючого випромінювання
- •8.3.1. Експозиційна доза, її потужність, одиниці
- •8.3.2. Поглинена доза, її потужність, одиниці
- •8.3.3. Еквівалентна доза, її потужність, одиниці
- •8.3.4. Дозиметри іонізуючого випромінювання
- •8.4. Взаємодія іонізуючого випромінювання з речовиною
- •8.4.1. Первинні фізичні механізми взаємодії рентгенівського випромінювання з речовиною
- •8.4.2. Первинні механізми дії радіоактивного випромінювання і потоків частинок на речовину
- •8.4.3. Фізико-хімічні механізми радіаційних пошкоджень
- •8.4.4. Ефект дії малих доз іонізуючого випромінювання
- •8.5. Застосування рентгенівського випромівання в медицині
- •8.5.1. Методи рентгенодіагностики
- •8.5.2. Рентгенотерапія
- •8.5.3. Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •8.5.4. Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •8.5.5. Деякі факти реакції крові на опромінення
- •8.5.6. Опромінення малими дозами великих груп людей
- •8.5.7. Латентний період-час виявлення в організмі порушень, викликаних радіацією
- •8.5.8. Проблеми ризику, пов'язаного із радіаційною дією
- •8.6. Комп'ютерна томографія
- •8.6.1. Рентгенівська томографія
- •8.6.2. Ямр-томографія
- •8.6.3. Позитронна емісійна томографія
- •8.7. Практичне заняття "рентгенівське випромінювання, його застосування"
- •8.8.Практичне заняття "радіоактивне випромінювання та його дія на біооб'єкти"
- •8.9. Лабораторна робота "визначення коефіцієнта лінійного послаблення гамма-випромінювання"
- •8.10. Лабораторна робота "робота з дозиметром дргз-04"
- •1. Призначення дозиметра дргз-04
- •2. Склад приладу
- •3. Характеристики дозиметра дргз-04
- •4. Управління роботою дозиметра дргз-04
- •5. Порядок виконання роботи
2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
За призначенням електровимірювальні прилади поділяють на:
а) Прилади для вимірювання сили струму: амперметри (А), міліамперметри (мА), мікроамперметри (мкА) і гальванометри (G), шкали яких проградуйовані у відповідних одиницях. На пристроях для комутації (клеми, гнізда, перемикачі границь вимірювання) вказані верхні межі вимірювання при відповідній комутації. Межі вимірювання розширюють за допомогою шунтів - спеціальних резисторів, які вмикаються паралельно до приладу.
б) Прилади для вимірювання напруги - вольтметри, мілівольтметри, кіловольтметри, а також гальванометри. На шкалі позначають одиниці вимірювання чи назву приладу. Межі вимірювання розширюють за допомогою резисторів, які підключають послідовно; верхні межі вимірюваної величини вказані на пристроях для комутації.
На всіх приладах, перерахованих в пунктах а) та б), вказані і значення величини їх опору, а на гальванометрах також ціна поділки і чутливість.
в) Прилади для вимірювання потужності — ватметри - виконують множення сили струму на напругу. Ці прилади, як правило, електродинамічної системи.
Комбіновані прилади, призначені для одночасного вимірювання сили струму, напруги й опору, є приладами магнітоелектричної системи, мають декілька шкал і додаткових опорів, систему комутації, джерела струму та випрямляч. Крім перерахованих приладів, які вимірюють основні електричні величини, існує ще ряд приладів спеціального призначення - частотоміри, фазоміри, вимірювачі ємності, індуктивності, добротності контурів тощо.
Вимірювання опорів
Опір
будь-якого провідника найбільш просто
можна визначити за допомогою амперметра
і вольтметра:
При
цьому вважають, що струм, який йде через
вольтметр, малий порівняно зі струмом
у провіднику. Точність такої методики
визначається точністю амперметра і
вольтметра і, як правило, не дуже велика
Для більш точних вимірювань опорів використовують ме тод порівнянь невідомого опору з відомим.
Мал. 2.44.
Це
здійснюють за допомогою місткової
схеми, зображеної на мал.
2.44
:
відомі
опори,
невідомий,
чутливий гальванометр. Опори плечей
моста
змінюють
і підбирають таким чином, щоб струм
гальванометра дорівнював нулю. В
цьому випадку:
(2.97)
Отже,
знаючи опори
молена
знайти невідомий опір
Доведемо
рівність (2.97).
Струм
через гальванометр не йтиме, якщо
потенціали точок в
і
г
будуть
рівними:
а
це буде у випадку, коли спад напруги на
опорі
буде
дорівнювати спаду напруги на опорі
-
сили
струму у відповідних ділянках розгалуженого
кола. Тобто струм через гальванометр
дорівнює нулю, якщо виконується рівність:
(2.98)
З іншого боку, сили струму у ділянках обернено пропорційні до опору цих ділянок:
(2.99)
Підставивши (2.99) у (2.98), отримаємо (2.97).
Місткова схема використовується в багатьох приладах, наприклад, в болометрі - приймачі теплового випромінювання. У цьому випадку одним із чотирьох плечей електричного моста є чутливий до змін температури елемент, найчастіше напівпровідниковий резистор (термістор). При попаданні потоку випромінювання на теплочутливий елемент баланс моста порушується і через гальванометр йде струм, величина якого залежить від інтенсивності падаючого потоку.
У реографі місткова схема використовується для спостереження змін опору провідника (яким є ділянка біологічної тканини), обумовлених змінами його об'єму, котрі відбуваються протягом кардіоциклу.
Вимірювання невідомоїЕРС компенсаційним методом. Дільники напруги
Дільники
напруги. Якщо
напруга на затискачах джерела більша,
ніж потрібно для живлення споживача,
то використовують дільники напруги,
їх принцип роботи базується на простій
залежності опору провідника від його
довжини:
Якщо напругу потрібно змінювати в ході
експерименту, то використовують
реостати із ковзаючим контактом. В
коло струму вмикають один кінець обмотки
реостата і ковзаючий контакт (мал.
2.45),
таким
чином отримують простий пристрій, який
дозволяє знімати напругу в межах
- напруга
між кінцями реостата,
-
напруга
між розімкненими точками
де
повний
опір реостата,
-
опір
його частини між затискачем d
і
ковзаючим контактом. Такий пристрій
називають дільником напруги.
Схема,
яка використовується для вимірювання
ЕРС Є\
компенсаційним методом, зображена
на мал.
2.46.
Два
джерелаувімкнені
назустріч одне одному. Опори
та
-
змінні,
причому
Якщо
можна обмежитись не дуже високою точністю
- однорідний
провідник з ковзаючим контактом (реоход).
У більш точних вимірюваннях
-
магазини
опорів.
Мал. 2.45. Мал. 2.46.
Виберемо
позитивний напрямок обходу контура і
обмежимося при цьому частинним
випадком, коли внутрішні опори джерел
значно менші за
Припустимо,
що
і
підібрані
таким чином, що струм через гальванометр
дорівнює нулю. Тоді
З двох останніх рівностей маємо
(2.100)
Ця
рівність і лежить в основі вимірювання
ЕРСкомпенсаційним
методом.