
- •Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.
- •1.1. Механічні властивості біологічних тканин
- •1.1.2. Деформація біологічних тканин
- •1.2. Плин в'язких рідин у біологічних системах
- •1.2.1. В'язкість рідини
- •1.2.2. В'язкість крові
- •1.2.3. В'язко-пружні властивості біологічних тканин
- •1.2.4. Основні рівняння руху рідини
- •1.2.5. Критерії механічної подібності рідин, що рухаються
- •1.2.6. Пульсові хвилі
- •1.3. Механічні коливання
- •1.3.1. Гармонічні коливання та їх основні параметри
- •1.3.2. Затухаючі коливання і аперіодичний рух
- •1.3.3. Вимушені коливання
- •1.3.4. Явище резонансу і автоколивання
- •1.3.5. Додавання гармонічних коливань
- •1.4. Механічні хвилі
- •1.4.1. Хвильове рівняння. Поздовжні і поперечні хвилі
- •1.4.2. Потік енергії хвилі. Вектор Умова
- •1.5. Акустика. Елементи фізики слуху. Основи аудіометрії
- •1.5.1. Природа звуку, його основні характеристики (об'єктивні і суб'єктивні)
- •1.5.2. Закон Вебера-Фехнера
- •1.5.3. Ультразвук
- •1.5.4. Інфразвук
- •1.6. Практикум з бюреології
- •1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
- •1.6.2. Лабораторна робота №2 "Визначення коефіцієнта в'язкості"
- •2.1. Електростатика
- •2.1.1. Основні характеристики електричного поля
- •2.1.2. Електричний диполь
- •2.1.3. Діелектрики, поляризація діелектриків
- •2.1.4. Діелектричні властивості біологічних тканин
- •2.1.5. П'єзоелектричний ефект
- •2.2. Постійний струм. Електропровідність біологічних тканин
- •2.2.1. Характеристики електричного струму
- •2.2.2. Електропровідність біологічних тканин ірідин
- •2.2.3. Дія електричного струму на живий організм
- •2.3. Магнітне поле
- •2.3.1. Магнітне поле у вакуумі і його характеристики
- •2.3.2. Закон Біо-Савара-Лапласа
- •2.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •2.3.4. Магнітні властивості речовини
- •2.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •2.4. Електромагнітні коливання
- •2.4.1. Рівняння електричних коливань
- •2.4.2. Вимушені електричні коливання, змінний струм
- •2.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •2.4.4. Імпеданс біологічних тканин
- •2.5. Електромагнітні хвилі
- •2.5.1. Струм зміщення
- •2.5.2. Рівняння Максвелла
- •2.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •2.5.4. Шкала електромагнітних хвиль
- •2.6. Семінар "методика одержання, реєстрації та передачі медико-бюлогічної інформації"
- •2.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •2.6.3. Осцилографи, генератори, підсилювачі, датчики
- •2.7. Лабораторний практикум
- •2.7.1. Лабораторна робота №1 "Визначення величини артеріального тиску за допомогою ємнісного датчика"
- •2.7.2. Лабораторна робота №2 "Напівпровідниковий діод"
- •2.7.3. Лабораторна робота №3 "Вивчення роботи транзистора"
- •2.7.4. Лабораторна робота №4 "Електрофоретичний метод визначення рухливості іонів"
- •3.1. Загальні відомості про електронну медичну апаратуру (ема)
- •3.1.1. Класифікація електронної медичної апаратури
- •3.1.2. Техніка безпеки
- •3.1.3. Правила безпеки
- •3.1.4. Технічні характеристики ема
- •3.2. Семінар "взаємодія електромагнітного поля з біологічними тканинами"
- •3.2.1. Основні характеристики емп
- •3.2.2. Основні процеси, які характеризують дію емп на біологічні тканини
- •3.2.3. Теплова дія емп на бт
- •3.2.4. Специфічна дія емп на біологічні тканини
- •3.3. Лабораторна робота №1 "робота з фізіотерапевтичною апаратурою"
- •3.3.1. Робота з увч-апаратом
- •3.3.2. Ультразвуковий терапевтичний апарат
- •3.3.3. Апарат для дарсонвалізації"Іскра-1"
- •3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
- •3.4.1. Природа електрокардіограми (екг)
- •3.4.2. Завдання до лабораторної роботи
- •3.5. Лабораторна робота №3 "робота з реографом ргч-01"
- •3.5.1. Додаткові теоретичні відомості
- •3.5.2. Стислі технічні характеристики та інструкція з експлуатації реографа ргч-01
- •4.1. Міжмолекулярні взаємодії у біополімерах
- •4.1.1. Класифікація взаємодій у біополімерах
- •4.2. Структурна організація білків та нуклеїнових кислот
- •4.2.1. Первинна структура
- •4.2.2. Вторинна структура
- •4.2.3. Третинна структура
- •4.2.4. Четвертинна структура
- •4.3. Будова і властивості біологічних мембран
- •4.4. Пасивний та активний транспорт речовин крізь мембранні структури клітин
- •4.4.1. Пасивний транспорт незаряджених молекул
- •4.4.2. Пасивний транспорт іонів
- •4.4.3. Активний транспорт
- •4.5. Біологічні потенціали
- •4.5.1. Рівноважний мембранний потенціал Нернста
- •4.5.2. Дифузійний потенціал
- •4.5.3. Потенціал Доннана. Доннанівська рівновага
- •4.5.4. Стаціонарний потенціал Гольдмана-Ходжкіна-Катца
- •4.5.5. Потенціал дії. Механізм виникнення та поширення нервового імпульсу
- •4.6. Лабораторний практикумі
- •4.6.1. Лабораторна робота "Дослідження нелінійних властивостей провідності шкіри жаби"
- •4.6.2. Лабораторна робота "Дослідження дисперсії електричного імпедансу біологічних тканин"
- •4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
- •4.6.4. Практичне заняття "Вивчення біофізики мембран за допомогою комп'ютерних програм"
- •5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
- •5.2. Основи термодинаміки незворотних процесів
- •5.2.1. Лінійний закон
- •5.2.2. Принцип симетрії кінетичних коефіцієнтів і виробництво ентропії
- •5.2.3. Спряження потоків у біологічних системах
- •5.2.4. Стаціонарний стан відкритих систем і теорема Пригожина щодо мінімуму виробництва ентропії
- •5.3. Відкриті медико-бюлогічні системи, що знаходяться далеко від рівноваги (елементи синергетики)
- •5.4. Моделювання процесів у складних медико-бюлопчних системах
- •5.5. Практичне заняття "термодинаміка відкритих біологічних систем"
- •6.1. Інтерференція світла
- •6.1.1. Інтерференція від двох когерентних світлових джерел
- •6.1.2. Історія відкриття явища просвітлення оптики, праці о. Смакули
- •6.1.3. Інші застосування явища інтерференції світла
- •6.2. Дифракція світла
- •6.2.1. Дифракція на щілині в паралельних променях
- •6.2.2. Дифракційна решітка
- •6.2.3. Голографія та її застосування в медицині
- •6.3. Геометрична оптика
- •6.3.1. Ідеальна центрована оптична система
- •6.3.2. Похибки оптичних систем
- •6.3.3. Оптична мікроскопія
- •6.4. Поляризація світла
- •6.4.1. Поляризація світла при відбиванні та заломленні
- •6.4.2. Поляризація при подвійному променезаломленні в кристалах
- •6.4.3. Поляризація світла при проходженні крізь поглинаючі анізотропні речовини
- •6.5. Взаємодія світла з речовиною
- •6.5.1. Дисперсія світла
- •6.5.2. Поглинання світла
- •6.5.3. Розсіяння світла
- •6.6. Фізичні основи термографії, закони теплового випромінювання
- •6.6.1. Закон Кірхгофа
- •6.6.2. Закон випромінювання Планка
- •6.6.3. Закон Стефана-Больцмана
- •6.6.4. Закон зміщення Віна
- •6.6.5. Випромінювання Сонця
- •6.6.6. Інфрачервоне випромінювання
- •6.6.7. Ультрафіолетове випромінювання
- •6.7. Біофізичні основи зорової рецепції
- •6.8. Лабораторний практикум
- •6.8.1. Лабораторна робота "Вивчення мікроскопа та вимірювання мікрооб'єктів"
- •6.8.2. Лабораторна робота "Визначення концентрації розчинів рефрактометричним методом"
- •7.1.1. Місце квантової механіки в системі наук про рух тіл
- •7.1.2. Гіпотеза де Бройля
- •7.1.3. Співвідношення невизначеностей Гейзенберга
- •7.1.4. Основне рівняння квантової механіки - рівняння Шредінгера
- •7.2. Випромінювання та поглинання енергії атомами та молекулами
- •7.2.1. Атомні спектри
- •7.2.2. Молекулярні спектри
- •7.3. Електронний парамагнітний резонанс,
- •7.3.1. Метод електронного парамагнітного резонансу
- •7.3.2. Метод спінових міток (спінових зондів)
- •7.3.3. Спін-імунологічний метод
- •7.3.4. Метод ядерного магнітного резонансу
- •7.4. Практикум 3 квантової механіки
- •7.4.1. Практичне заняття "Основні уявлення квантової механіки"
- •7.4.2. Лабораторна робота "Застосування фотоелемента для виміру освітленості та визначення його чутливості"
- •7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
- •8.1. Рентгенівські промені
- •8.1.1. Історія відкриття рентгенівських променів, праці і. Пулюя
- •8.1.2. Природа рентгенівських променів і методи їх отримання
- •8.1.3. Гальмівне рентгенівське випромінювання
- •8.1.4. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •8.2. Радіоактивне випромінювання
- •8.2.1. Радіоактивність, її властивості
- •8.2.2. Основний закон радіоактивного розпаду, період напіврозпаду, активність
- •8.2.3. Правила зміщення, особливості спектрів при радіоактивному розпаді
- •8.3. Основи дозиметрії іонізуючого випромінювання
- •8.3.1. Експозиційна доза, її потужність, одиниці
- •8.3.2. Поглинена доза, її потужність, одиниці
- •8.3.3. Еквівалентна доза, її потужність, одиниці
- •8.3.4. Дозиметри іонізуючого випромінювання
- •8.4. Взаємодія іонізуючого випромінювання з речовиною
- •8.4.1. Первинні фізичні механізми взаємодії рентгенівського випромінювання з речовиною
- •8.4.2. Первинні механізми дії радіоактивного випромінювання і потоків частинок на речовину
- •8.4.3. Фізико-хімічні механізми радіаційних пошкоджень
- •8.4.4. Ефект дії малих доз іонізуючого випромінювання
- •8.5. Застосування рентгенівського випромівання в медицині
- •8.5.1. Методи рентгенодіагностики
- •8.5.2. Рентгенотерапія
- •8.5.3. Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •8.5.4. Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •8.5.5. Деякі факти реакції крові на опромінення
- •8.5.6. Опромінення малими дозами великих груп людей
- •8.5.7. Латентний період-час виявлення в організмі порушень, викликаних радіацією
- •8.5.8. Проблеми ризику, пов'язаного із радіаційною дією
- •8.6. Комп'ютерна томографія
- •8.6.1. Рентгенівська томографія
- •8.6.2. Ямр-томографія
- •8.6.3. Позитронна емісійна томографія
- •8.7. Практичне заняття "рентгенівське випромінювання, його застосування"
- •8.8.Практичне заняття "радіоактивне випромінювання та його дія на біооб'єкти"
- •8.9. Лабораторна робота "визначення коефіцієнта лінійного послаблення гамма-випромінювання"
- •8.10. Лабораторна робота "робота з дозиметром дргз-04"
- •1. Призначення дозиметра дргз-04
- •2. Склад приладу
- •3. Характеристики дозиметра дргз-04
- •4. Управління роботою дозиметра дргз-04
- •5. Порядок виконання роботи
1.5.4. Інфразвук
Інфразвукові коливання і хвилі - це пружні коливання з частотами до 16 Гц. Інфразвук дуже слабко поглинається в газах, рідинах та твердих тілах і тому може розповсюджуватися майже без втрат на великі відстані. Ця надзвичайно важлива властивість ультразвуку використовується у техніці - у звукометричних приладах (мікрофони, гідрофони тощо) для реєстрації різноманітних процесів, що відбуваються з інфразвуковими частотами. До таких процесів належать землетруси, вибухи, виробничі шуми і вібрації, грозові розряди, турбулентні явища в атмосфері, хвилі цунамі тощо.
Зрозуміло, що властивість інфразвукових хвиль розповсюджуватись на дуже далекі відстані повинна бути використаною в процесі біологічної еволюції як засіб передачі та прийому інформації між живими істотами. І хоча це питання ще недостатньо вивчене, слід зазначити, що такі тварини, як летючі миші, дельфіни, кити і деякі інші мають (окрім ультразвукової локації в діапазоні декількох десятків кГц) ще й органи інфразвукової локації.
Для людини інфразвукові коливання великої амплітуди можуть бути дуже шкідливими, оскільки деякі процеси в організмі людини відбуваються в інтервалі інфразвукових частот. Наприклад, а-ритми головного мозку мають частотний інтервал 9-13 Гц і тому дія інфразвукових хвиль може викликати шкідливі резонансні явища в мозку людини.
Високоінтенсивні
виробничі шуми і вібрації, що мають
складний неперіодичний характер в
різних частотних інтервалах, включаючи
інфразвуковий, також є шкідливими для
людини. Рівень інтенсивності цих звуків
вимірюється за допомогою спеціальних
приладів -
шумомірів.
Встановлено, що гранично
дозволений
рівень інтенсивності низькочастотних
шумів та вібрацій дорівнює
тоді
як їх нормальним рівнем вважається
значення
1.6. Практикум з бюреології
1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
Мета роботи: а) одержати діаграми розтягу (для волосини) і стиснення (для кістки чи дерев'яного зразка) та визначити основні показники пружних властивостей тканин (модуль Юнга, межу міцності, залишкову деформацію); б) дослідити в'язко-пружні властивості біологічних тканин (текучість матеріалу).
Контрольні питання для підготовки до лабораторної
роботи
1. Поняття про деформацію. Види деформацій. Закон Гука. Модуль Юнга. Коефіцієнт Пуассона.
2. Діаграма розтягу (стиснення), її основні зони і характеристичні точки.
3. Пружні властивості деяких біологічних тканин (колагену, еластину, кістки, стінки кровоносних судин).
4. В'язко-пружні властивості біологічних тканин. Реологічні моделі. Повзучість (текучість) матеріалу. Релаксація напруження.
Додаткова література
1. Ремизов А.Н. Медицинская и биологическая физика. - М.: Высшая школа, 1996.-Гл. 10, с. 173-183.
2. Владимиров Ю.А. и др. Биофизика. - М.: Медицина, 1988 - Гл. 10.
3. Ремизов А.Н. Медицинская и биологическая физика. - М.: Высшая школа, 1987. - Гл. 10, с. 192-200.
4. Эссаулова И.А. и др. Руководство к лабораторным работам по медицинской и биологической физике. - М.: Высшая школа, 1987.-С. 111-115.
Додаткові теоретичні відомості
Діаграма деформації являє собою графічне зображення експериментальної залежності напруження в зразку від його відносної деформації. Як відомо, величина напруження а характеризує силу F, що діє на одиницю площі поперечного перерізу зразка (σ = F/S), а деформація розтягу або стиснення оцінюється по абсолютній (Δl= l-l0) або відносній (ε = = Δl/l0) зміні довжини зразка. Для незначної лінійної деформації (Δl/l0<< 1) виконується закон Гука: напруження, яке виникло в зразку, прямо пропорційне відносній зміні його довжини (σ= Е -ε). Величина Е в цьому виразі називається модулем Юнга. Він є однією з найважливіших характеристик пружних властивостей матеріалу і залежить від його природи.
Діаграми деформації біологічних тканин суттєво відрізняються від подібних діаграм для металевих зразків. Існують два типи діаграм, які схематично приведені на мал. 1.34. Для ряду зразків (колаген, волосина, кістка, шкіра) при збільшенні деформацій їх жорсткість зменшується (див. мал. 1.34а). Межа пружних деформацій порядку 5%, після чого матеріал починає "текти" без помітного збільшення напруження в зразку.
Мал. 1.34. Діаграми деформації.
Для інших зразків їх жорсткість при розтязі різко збільшується (еластин, м'яз, стінка судини, мал. 1.34б), такий характер спостерігається аж до руйнування зразка. Руйнування зразка може відбутися при видовженні зразка більше ніж в два рази (для еластіну) або на 15-20% (для судини). Зона текучості на таких діаграмах проявляється слабко. Діаграми деформацій, отримані в діапазоні фізіологічних змін довжин, як правило, нелінійні. В цьому випадку модуль Юнга Е, як характеристика пружних властивостей, може використовуватися тільки в діапазоні дуже малих деформацій, для яких можна вважати справедливим закон Гука (σ= Е -ε). В фізіологічному діапазоні зміни довжин, як правило, користуються приведений модулем Юнга (Епр), який є усередненою характеристикою пружних властивостей зразка:
де еi - ефективний або тангенціальний модуль Юнга, який визначається за формулою
(1.69)
У цій формулі Δσi и Δεi є відповідно зміни напруження та деформації в довільно вибраній точці на діаграмі розтягу або стиснення зразка (див. мал. 1.34).
Із формули (1.69) випливає, що модуль Юнга в певній точці діаграми є похідною dotdε та чисельно дорівнює тангенсу кута нахилу дотичної, проведеної в цій точці. Закономірності зміни модуля Юнга для діаграм деформацій, які тут розглядаються, приведені пунктиром на мал. 1.34.
Залишкові деформації (εзал) визначаються за розміром зразка після побудови діаграми деформації і зняття навантаження до нуля (див. тонку пунктирну лінію на мал. 1.34а).
Межа міцності (εmах) визначається величиною максимального напруження, при якому відбувається руйнування матеріалу.
Порядок виконання лабораторної роботи
Завдання 1. Зняття діаграми розтягу волосини.
1. Ознайомтесь з макетом для розтягу волосини (мал. 1.35). Волосину 2 закріплюють між двома зажимами (нерухомим - l і рухомим - 3). За шкалою б знімають початковий l0 і поточні розміри l волосини при її деформації. За рухомою шкалою 7 визначають величину зовнішньої сили F, яка розтягує волосину і яку можна змінювати, розтягуючи пружину 4 переміщенням штока 5. Шкала 7 проградуйована в Ньютонах.
Мал. 1.35.
2. Підготуйте таблицю 1.
3. Мікрометром виміряйте діаметр волосини. Краще ці виміри провести за допомогою мікроскопа.
4. Закріпіть волосину зажимами і запишіть початкову довжину волосини (lо). Дані занесіть в таблицю 1.
5. Переміщуючи шток 5, збільшіть прикладену силу F. Для кожного значення сили вимірюйте довжину волосини по шкалі 6 і дані заносьте в таблицю.
Примітка. Якщо при деякій силі ¥т неможливо виміряти величину l (матеріал "тече"), то необхідно зменшити силу натягу до нуля, інакше волосина розірветься. Запам'ятайте величину сили F,,,.
6. Після зняття навантаження визначте залишкову деформацію εзал за положенням показника на шкалі 6.
Таблиия 1. Peзvльmamu зняття діаграми розтягу волосини
|
F[H] |
l[мм] |
Δl [мм] |
ε |
σ[Н/М2] |
Е [Н/м2] |
0 |
|
l0 = |
|
|
|
|
1 |
0.1 |
|
|
|
|
|
2 |
0.2 |
|
|
|
|
|
3 |
0.3 |
|
|
|
|
|
4 |
0.4 |
|
|
|
|
|
5 |
0.5 |
|
|
|
|
|
Діаметр волосини J0 = ... [мм], площа перерізу S = ... [м2], початкова довжина волосини l0 = ... \мм\. Приведений модуль Юнга волосини: Eпр=
Завдання 2. Дослідження повзучості волосини. 1. Підготуйте таблицю 2.
Таблиця 2. Результати дослідження повзучості волосини. Початкова довжина волосини l0 = ... [мм], Fпл = ... [Н].
№ |
Δl [мм] |
t[c] Fпл1 |
t[c] Fпл2 |
1. |
5 |
|
|
2. |
10 |
|
|
3. |
15 |
|
|
4. |
20 |
|
|
5. |
25 |
|
|
2. Для різних сил Fпл1 і Fпл2 зніміть залежність ε (t). Для цього швидко розтягніть пружину до значення Fпл1 та, підтримуючи це показання, фіксуйте час по мірі подовження волосини на величину Δl, зазначену в таблиці (час фіксується через кожні 5 мм подовження волосини в процесі повзучості). Примітка. Знімати цю характеристику необхідно втрьох (один студент підтримує сталу силу, другий - визначає величину подовження, третій - час в цей момент).
Аналогічні виміри зробити для другої сили Fпл2.
Завдання 3. Зняття діаграми стиснення зразка (кістки, дерева тощо).
1. Ознайомтесь з установкою для стиснення зразка. Зразок розміщується між двома опорами і важельною системою, стискується за допомогою вантажів, які підвішуються до кінця важеля. Розміри деформації вимірюються мікрометром за допомогою електричних контактів.
2. Підготуйте таблицю 3.
3. Занесіть в таблицю значення початкової довжини dз, зовнішнього dв та внутрішнього de діаметрів зразка.
4. Підготуйте установку для роботи (закріпіть зразок, перевірте електричний контакт ланцюга).
5. Збільшуючи навантаження на зразок, визначте за допомогою мікрометра відповідне значення його довжини. Дані занесіть в таблицю. (Попереднє навантаження в 1 кг використовується для усунення зазорів і люфтів в установці).
Таблиця
3.
Результати
зняття діаграми стиснення зразка.
Приведений модуль Юнга: Eпр=
6. Обробка результатів вимірювання:
а)
попередньо визначте значення абсолютної
зміни довжин волосини та кістки
в
[мм\
та
занесіть у відповідні стовпці таблиць;
б) обчислення проводяться за наступними формулами:
(k - співвідношення плечей важеля, його значення k приведено на макеті),
Отримані результати перенесіть в таблицю протокола.
7. Побудуйте за даними таблиць 1, 3 діаграми деформацій зразків. За даними таблиці 2 побудувати криву повзучості для волосини.
8. Зробіть висновки за результатами досліджень (оцініть ха-рактер зв'язку між напруженням і деформацією зразків, порівняйте модулі Юнга тощо).
Оформити протокол роботи. Протокол повинен містити:
- стислу теоретичну частину (основна інформація щодо елементів біореології, формули для розрахунків);
- завдання 1, 2 та 3 з таблицями та розрахунками;
- графіки та висновки.
Завдання для самостійної роботи та самоконтролю
1. Визначити коефіцієнт Пуассона для м'язового волокна циліндричної форми завдовжки /о, діаметром do, вважаючи його практично нестисливим.
(Вказівка:
знайти
та порівняти об'єми м'яза до і після
деформації при зміні розмірів).
2. Дати якісне пояснення наведених нижче діаграм деформацій різних зразків:
а) чим відрізняються пружні властивості цих зразків?
б) чи змінюється модуль Юнга?
в) як знайти ефективні значення модуля Юнга?
г) намалювати графіки зміни ефективного модуля Юнга.
3.Яке
навантаження витримає гомілкова кістка
(в кг),
якщоКістку
вважати полою трубкою, для якої внутрішній
і зовнішній діаметри відповідно 2
та
3
см.
4. Визначити сталу релаксації напруження волосини, якщо за 1.5 хвилини напруження зменшилось на 50%.
5. Через який час напруження в м'язі зменшиться вдвічі, якщо стала релаксації порядку однієї хвилини?
6. Поясніть фізичний зміст модуля Юнга.
7. У чому полягає доцільність збільшення жорсткості (регідності) стінки кровоносних судин при їх розширенні? Чому ця якість буде відсутня для інших біологічних структур (кістки, волосини, шкіри тощо)?