
- •Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.
- •1.1. Механічні властивості біологічних тканин
- •1.1.2. Деформація біологічних тканин
- •1.2. Плин в'язких рідин у біологічних системах
- •1.2.1. В'язкість рідини
- •1.2.2. В'язкість крові
- •1.2.3. В'язко-пружні властивості біологічних тканин
- •1.2.4. Основні рівняння руху рідини
- •1.2.5. Критерії механічної подібності рідин, що рухаються
- •1.2.6. Пульсові хвилі
- •1.3. Механічні коливання
- •1.3.1. Гармонічні коливання та їх основні параметри
- •1.3.2. Затухаючі коливання і аперіодичний рух
- •1.3.3. Вимушені коливання
- •1.3.4. Явище резонансу і автоколивання
- •1.3.5. Додавання гармонічних коливань
- •1.4. Механічні хвилі
- •1.4.1. Хвильове рівняння. Поздовжні і поперечні хвилі
- •1.4.2. Потік енергії хвилі. Вектор Умова
- •1.5. Акустика. Елементи фізики слуху. Основи аудіометрії
- •1.5.1. Природа звуку, його основні характеристики (об'єктивні і суб'єктивні)
- •1.5.2. Закон Вебера-Фехнера
- •1.5.3. Ультразвук
- •1.5.4. Інфразвук
- •1.6. Практикум з бюреології
- •1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
- •1.6.2. Лабораторна робота №2 "Визначення коефіцієнта в'язкості"
- •2.1. Електростатика
- •2.1.1. Основні характеристики електричного поля
- •2.1.2. Електричний диполь
- •2.1.3. Діелектрики, поляризація діелектриків
- •2.1.4. Діелектричні властивості біологічних тканин
- •2.1.5. П'єзоелектричний ефект
- •2.2. Постійний струм. Електропровідність біологічних тканин
- •2.2.1. Характеристики електричного струму
- •2.2.2. Електропровідність біологічних тканин ірідин
- •2.2.3. Дія електричного струму на живий організм
- •2.3. Магнітне поле
- •2.3.1. Магнітне поле у вакуумі і його характеристики
- •2.3.2. Закон Біо-Савара-Лапласа
- •2.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •2.3.4. Магнітні властивості речовини
- •2.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •2.4. Електромагнітні коливання
- •2.4.1. Рівняння електричних коливань
- •2.4.2. Вимушені електричні коливання, змінний струм
- •2.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •2.4.4. Імпеданс біологічних тканин
- •2.5. Електромагнітні хвилі
- •2.5.1. Струм зміщення
- •2.5.2. Рівняння Максвелла
- •2.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •2.5.4. Шкала електромагнітних хвиль
- •2.6. Семінар "методика одержання, реєстрації та передачі медико-бюлогічної інформації"
- •2.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •2.6.3. Осцилографи, генератори, підсилювачі, датчики
- •2.7. Лабораторний практикум
- •2.7.1. Лабораторна робота №1 "Визначення величини артеріального тиску за допомогою ємнісного датчика"
- •2.7.2. Лабораторна робота №2 "Напівпровідниковий діод"
- •2.7.3. Лабораторна робота №3 "Вивчення роботи транзистора"
- •2.7.4. Лабораторна робота №4 "Електрофоретичний метод визначення рухливості іонів"
- •3.1. Загальні відомості про електронну медичну апаратуру (ема)
- •3.1.1. Класифікація електронної медичної апаратури
- •3.1.2. Техніка безпеки
- •3.1.3. Правила безпеки
- •3.1.4. Технічні характеристики ема
- •3.2. Семінар "взаємодія електромагнітного поля з біологічними тканинами"
- •3.2.1. Основні характеристики емп
- •3.2.2. Основні процеси, які характеризують дію емп на біологічні тканини
- •3.2.3. Теплова дія емп на бт
- •3.2.4. Специфічна дія емп на біологічні тканини
- •3.3. Лабораторна робота №1 "робота з фізіотерапевтичною апаратурою"
- •3.3.1. Робота з увч-апаратом
- •3.3.2. Ультразвуковий терапевтичний апарат
- •3.3.3. Апарат для дарсонвалізації"Іскра-1"
- •3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
- •3.4.1. Природа електрокардіограми (екг)
- •3.4.2. Завдання до лабораторної роботи
- •3.5. Лабораторна робота №3 "робота з реографом ргч-01"
- •3.5.1. Додаткові теоретичні відомості
- •3.5.2. Стислі технічні характеристики та інструкція з експлуатації реографа ргч-01
- •4.1. Міжмолекулярні взаємодії у біополімерах
- •4.1.1. Класифікація взаємодій у біополімерах
- •4.2. Структурна організація білків та нуклеїнових кислот
- •4.2.1. Первинна структура
- •4.2.2. Вторинна структура
- •4.2.3. Третинна структура
- •4.2.4. Четвертинна структура
- •4.3. Будова і властивості біологічних мембран
- •4.4. Пасивний та активний транспорт речовин крізь мембранні структури клітин
- •4.4.1. Пасивний транспорт незаряджених молекул
- •4.4.2. Пасивний транспорт іонів
- •4.4.3. Активний транспорт
- •4.5. Біологічні потенціали
- •4.5.1. Рівноважний мембранний потенціал Нернста
- •4.5.2. Дифузійний потенціал
- •4.5.3. Потенціал Доннана. Доннанівська рівновага
- •4.5.4. Стаціонарний потенціал Гольдмана-Ходжкіна-Катца
- •4.5.5. Потенціал дії. Механізм виникнення та поширення нервового імпульсу
- •4.6. Лабораторний практикумі
- •4.6.1. Лабораторна робота "Дослідження нелінійних властивостей провідності шкіри жаби"
- •4.6.2. Лабораторна робота "Дослідження дисперсії електричного імпедансу біологічних тканин"
- •4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
- •4.6.4. Практичне заняття "Вивчення біофізики мембран за допомогою комп'ютерних програм"
- •5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
- •5.2. Основи термодинаміки незворотних процесів
- •5.2.1. Лінійний закон
- •5.2.2. Принцип симетрії кінетичних коефіцієнтів і виробництво ентропії
- •5.2.3. Спряження потоків у біологічних системах
- •5.2.4. Стаціонарний стан відкритих систем і теорема Пригожина щодо мінімуму виробництва ентропії
- •5.3. Відкриті медико-бюлогічні системи, що знаходяться далеко від рівноваги (елементи синергетики)
- •5.4. Моделювання процесів у складних медико-бюлопчних системах
- •5.5. Практичне заняття "термодинаміка відкритих біологічних систем"
- •6.1. Інтерференція світла
- •6.1.1. Інтерференція від двох когерентних світлових джерел
- •6.1.2. Історія відкриття явища просвітлення оптики, праці о. Смакули
- •6.1.3. Інші застосування явища інтерференції світла
- •6.2. Дифракція світла
- •6.2.1. Дифракція на щілині в паралельних променях
- •6.2.2. Дифракційна решітка
- •6.2.3. Голографія та її застосування в медицині
- •6.3. Геометрична оптика
- •6.3.1. Ідеальна центрована оптична система
- •6.3.2. Похибки оптичних систем
- •6.3.3. Оптична мікроскопія
- •6.4. Поляризація світла
- •6.4.1. Поляризація світла при відбиванні та заломленні
- •6.4.2. Поляризація при подвійному променезаломленні в кристалах
- •6.4.3. Поляризація світла при проходженні крізь поглинаючі анізотропні речовини
- •6.5. Взаємодія світла з речовиною
- •6.5.1. Дисперсія світла
- •6.5.2. Поглинання світла
- •6.5.3. Розсіяння світла
- •6.6. Фізичні основи термографії, закони теплового випромінювання
- •6.6.1. Закон Кірхгофа
- •6.6.2. Закон випромінювання Планка
- •6.6.3. Закон Стефана-Больцмана
- •6.6.4. Закон зміщення Віна
- •6.6.5. Випромінювання Сонця
- •6.6.6. Інфрачервоне випромінювання
- •6.6.7. Ультрафіолетове випромінювання
- •6.7. Біофізичні основи зорової рецепції
- •6.8. Лабораторний практикум
- •6.8.1. Лабораторна робота "Вивчення мікроскопа та вимірювання мікрооб'єктів"
- •6.8.2. Лабораторна робота "Визначення концентрації розчинів рефрактометричним методом"
- •7.1.1. Місце квантової механіки в системі наук про рух тіл
- •7.1.2. Гіпотеза де Бройля
- •7.1.3. Співвідношення невизначеностей Гейзенберга
- •7.1.4. Основне рівняння квантової механіки - рівняння Шредінгера
- •7.2. Випромінювання та поглинання енергії атомами та молекулами
- •7.2.1. Атомні спектри
- •7.2.2. Молекулярні спектри
- •7.3. Електронний парамагнітний резонанс,
- •7.3.1. Метод електронного парамагнітного резонансу
- •7.3.2. Метод спінових міток (спінових зондів)
- •7.3.3. Спін-імунологічний метод
- •7.3.4. Метод ядерного магнітного резонансу
- •7.4. Практикум 3 квантової механіки
- •7.4.1. Практичне заняття "Основні уявлення квантової механіки"
- •7.4.2. Лабораторна робота "Застосування фотоелемента для виміру освітленості та визначення його чутливості"
- •7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
- •8.1. Рентгенівські промені
- •8.1.1. Історія відкриття рентгенівських променів, праці і. Пулюя
- •8.1.2. Природа рентгенівських променів і методи їх отримання
- •8.1.3. Гальмівне рентгенівське випромінювання
- •8.1.4. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •8.2. Радіоактивне випромінювання
- •8.2.1. Радіоактивність, її властивості
- •8.2.2. Основний закон радіоактивного розпаду, період напіврозпаду, активність
- •8.2.3. Правила зміщення, особливості спектрів при радіоактивному розпаді
- •8.3. Основи дозиметрії іонізуючого випромінювання
- •8.3.1. Експозиційна доза, її потужність, одиниці
- •8.3.2. Поглинена доза, її потужність, одиниці
- •8.3.3. Еквівалентна доза, її потужність, одиниці
- •8.3.4. Дозиметри іонізуючого випромінювання
- •8.4. Взаємодія іонізуючого випромінювання з речовиною
- •8.4.1. Первинні фізичні механізми взаємодії рентгенівського випромінювання з речовиною
- •8.4.2. Первинні механізми дії радіоактивного випромінювання і потоків частинок на речовину
- •8.4.3. Фізико-хімічні механізми радіаційних пошкоджень
- •8.4.4. Ефект дії малих доз іонізуючого випромінювання
- •8.5. Застосування рентгенівського випромівання в медицині
- •8.5.1. Методи рентгенодіагностики
- •8.5.2. Рентгенотерапія
- •8.5.3. Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •8.5.4. Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •8.5.5. Деякі факти реакції крові на опромінення
- •8.5.6. Опромінення малими дозами великих груп людей
- •8.5.7. Латентний період-час виявлення в організмі порушень, викликаних радіацією
- •8.5.8. Проблеми ризику, пов'язаного із радіаційною дією
- •8.6. Комп'ютерна томографія
- •8.6.1. Рентгенівська томографія
- •8.6.2. Ямр-томографія
- •8.6.3. Позитронна емісійна томографія
- •8.7. Практичне заняття "рентгенівське випромінювання, його застосування"
- •8.8.Практичне заняття "радіоактивне випромінювання та його дія на біооб'єкти"
- •8.9. Лабораторна робота "визначення коефіцієнта лінійного послаблення гамма-випромінювання"
- •8.10. Лабораторна робота "робота з дозиметром дргз-04"
- •1. Призначення дозиметра дргз-04
- •2. Склад приладу
- •3. Характеристики дозиметра дргз-04
- •4. Управління роботою дозиметра дргз-04
- •5. Порядок виконання роботи
8.6.3. Позитронна емісійна томографія
Принцип
позитронної емісійної томографії (ПЕТ)
базується
на явищі анігіляції електрона і позитрона,
тобто частинки та античастинки.
Реакція, що характеризує це явище, вже
згадувалася раніше і має такий
вигляд:Схематично
ця реакція зображена на рис. 8.23.
Реакція
анігіляції пари електрон-позитрон була
відкрита в 1933
p.,
вже
через рік після експериментального
відкриття позитрона в космічних променях.
Сам термін "анігіляція" в перекладі
з латинської мови означає "зникнення,
перетворення в ніщо". Звичайно,
цей термін в буквальному його розумінні
є невірним, оскільки при взаємодії
частинки та античастинки, зокрема
електрона
і позитрона
виконуються
всі фундаментальні закони природи -
закони
збереження енергії, імпульсу, електричного
заряду, спіна тощо. При цьому матерія
не зникає і лише перетворюється в інші
її види, а саме -
у
фотони електромагнітного
випромінюваннядіапазону
або
кванти.
Слід зазначити, що через закон збереження
так званої зарядової парності при
зникненні (анігіляції) електрона і
позитрона, які мають нульовий сумарний
спін, може виникнути лише парне
число
квантів
(частіше за все їх буде два).
При
відносно низьких енергіях пари
частинка-анти-частинка процес анігіляції
супроводжується народженням більш
легких частинок. Прикладом такої реакції
анігіляції є саме реакція з утворенням
двох
квантів,
оскільки маса спокою
кванта
дорівнює нулю. У протилежному випадку,
тобто при значних енергіях, легкі
частинка-античастинка можуть анігілювати
з утворенням пари більш важких
частинки-античастинки. Прикладом
подібної реакції є наступна реакція
утворення з електрона і позитрона двох
мезонів:
(8.44)
Мезони
(цей термін означає "проміжний,
середній") мають маси спокою, які
знаходяться між масою спокою електрона
(або
в енергетичних одиницях
) та
масами спокою протона і нейтрона
().Так,
для
мезонів
маса спокою (в енергетичних
одиницях) становить
,
тобто
приблизно в 275
разів
більша за масу спокою електрона і в 6.7
раза менша
за масу спокою протона. Складні процеси
перетворення частинок, подібні до
реакції (8.44),
вивчає
сучасна теорія сильних ядерних взаємодій
-
квантова
хромодинаміка.
Суть
методу ПЕТ
можна
сформулювати таким чином: насамперед,
на спеціальних пристроях виробляються
радіоактивні ізотопи, які мають досить
короткий період напіврозпаду(типово
кілька
годин). Частіше за все
це
є ізотопи так званих "автентичних
елементів" (кисню, азоту, вуглецю) -
тих елементів, що містяться в тілі
людини. Так, наприклад, у відділенні
медичної фізики Університету
Вісконсін-Медісон (США) для реалізації
методу ПЕТ використовують ізотопи
та інші, які виробляються на циклотроні.
Як згадувалось раніше, для радіоактивних
ізотопів подібних легких ядер, де
кількість протонів і нейтронів в ядрі
приблизно однакова, є притаманним
позитронний
розпад,
внаслідок якого з атомного ядра
випромінюється позитрон.
Наступний
етап методу ПЕТ полягає в тому, що
короткоживучі ізотопи, нароблені на
циклотроні або іншій спеціальній
апаратурі, дуже швидко переправляються
у шпиталі (як правило, до відділень
радіаційної онкології). Тут ці препарати
вводяться в пухлину, де позитрони
анігілюють з електронами. Внаслідок
реакції анігіляції народжуються два
фотони (кванти)
з енергією
кожний.
Згідно з законом збереження імпульсу,
обидва
кванти
розлітаються під кутом 180°
стосовно
один до одного (див. рис. 8.23).
Саме
ця обставина використовується для їх
виявлення (детектування) за допомогою
електротехнічної схеми збіжності та
подальшої візуалізації об'єкта
дослідження, де відбулися акти
анігіляції пар електрон-позитрон, за
допомогою спеціальних комп'ютерних
програм.
Рис.
8.23.
Реакція
анігіляції електрона і позитрона:
дві прямі зустрічні лінії позначають
зіткнення пари електрон
і позитрон
а дві хвилясті лінії -два
кванти,
що розлітаються під кутом
Метод ПЕТ дає змогу отримувати дуже корисну і точну інформацію щодо процесів, що відбуваються в головному мозку людини та в інших органах при діагностиці нейропсихічних порушень, під час вивчення досить тонких особливостей діяльності центральної нервової системи тощо. Сучасні модифікації методу ПЕТ використовують нові радіоактивні ізотопи (наприклад, позитронно-активний
ізотоп
фтору
з
періодом напіврозпаду
хвилин).
За його допомогою в Університеті
Вісконсін-Медісон було отримано, зокрема,
ПЕТ-зображення розподілу флуродіоксіглюкози
ФДГ
у головному мозку людини. Цей розподіл
дає змогу зробити висновки щодо процесів
засвоєння глюкози і є чудовим індикатором
необхідних енергетичних потреб головного
мозку людини. На рис. 8.24 наведені два
зображення головного мозку, що накладені
одне на друге. Вони отримані у відділенні
медичної фізики Університету
Вісконсін-Медісон за допомогою кореляції
методів ПЕТ і ЯМР-томографії. При цьому
ПЕТ дає кращу інформацію щодо процесів
метаболізму, тоді як ЯМР-томографія дає
змогу детально вивчати анатомічні
особливості досліджуваного біооб'єкта.
Рис. 8.24. Зображення головного мозку людини, отримане за допомогою методів ПЕТ і ЯМР-томографії.
Рис. 8.25. Вітчизняний комп'ютерний томограф ГКС-301Т.
У закінченні цього параграфа зазначимо, що в Україні завдяки спільним зусиллям вчених та інженерів Національного медичного університету імені О.О. Богомольця, Інституту монокристалів НАН України (м. Харків) та Спеціального конструкторського бюро СКТБ-Оризон (м. Суми) розроблені та вже втілені в медичну практику оригінальні вітчизняні емісійні комп'ютерні томографи типу ГКС-301Т (рис. 8.25).
Цей емісійний комп'ютерний томограф складається з таких основних частин: 1 - позитронно-чутливий детектор γ-квантів; 2 - ліжко пацієнта, переміщення апаратури стосовно якого керується спеціальною комп'ютерною програмою; 3 - система для отримання, обробки та візуалізації радіологічної інформації. Об'єктивні характеристики комп'ютерного томографу ГКС-301Т демонструють той факт, що цей вітчизняний томограф не поступається, а по деяких параметрах переважає подібні закордонні зразки томографів, що виготовлені відомими фірмами Siemens, Picket, Trionix та ін.