
- •Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.
- •1.1. Механічні властивості біологічних тканин
- •1.1.2. Деформація біологічних тканин
- •1.2. Плин в'язких рідин у біологічних системах
- •1.2.1. В'язкість рідини
- •1.2.2. В'язкість крові
- •1.2.3. В'язко-пружні властивості біологічних тканин
- •1.2.4. Основні рівняння руху рідини
- •1.2.5. Критерії механічної подібності рідин, що рухаються
- •1.2.6. Пульсові хвилі
- •1.3. Механічні коливання
- •1.3.1. Гармонічні коливання та їх основні параметри
- •1.3.2. Затухаючі коливання і аперіодичний рух
- •1.3.3. Вимушені коливання
- •1.3.4. Явище резонансу і автоколивання
- •1.3.5. Додавання гармонічних коливань
- •1.4. Механічні хвилі
- •1.4.1. Хвильове рівняння. Поздовжні і поперечні хвилі
- •1.4.2. Потік енергії хвилі. Вектор Умова
- •1.5. Акустика. Елементи фізики слуху. Основи аудіометрії
- •1.5.1. Природа звуку, його основні характеристики (об'єктивні і суб'єктивні)
- •1.5.2. Закон Вебера-Фехнера
- •1.5.3. Ультразвук
- •1.5.4. Інфразвук
- •1.6. Практикум з бюреології
- •1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
- •1.6.2. Лабораторна робота №2 "Визначення коефіцієнта в'язкості"
- •2.1. Електростатика
- •2.1.1. Основні характеристики електричного поля
- •2.1.2. Електричний диполь
- •2.1.3. Діелектрики, поляризація діелектриків
- •2.1.4. Діелектричні властивості біологічних тканин
- •2.1.5. П'єзоелектричний ефект
- •2.2. Постійний струм. Електропровідність біологічних тканин
- •2.2.1. Характеристики електричного струму
- •2.2.2. Електропровідність біологічних тканин ірідин
- •2.2.3. Дія електричного струму на живий організм
- •2.3. Магнітне поле
- •2.3.1. Магнітне поле у вакуумі і його характеристики
- •2.3.2. Закон Біо-Савара-Лапласа
- •2.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •2.3.4. Магнітні властивості речовини
- •2.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •2.4. Електромагнітні коливання
- •2.4.1. Рівняння електричних коливань
- •2.4.2. Вимушені електричні коливання, змінний струм
- •2.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •2.4.4. Імпеданс біологічних тканин
- •2.5. Електромагнітні хвилі
- •2.5.1. Струм зміщення
- •2.5.2. Рівняння Максвелла
- •2.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •2.5.4. Шкала електромагнітних хвиль
- •2.6. Семінар "методика одержання, реєстрації та передачі медико-бюлогічної інформації"
- •2.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •2.6.3. Осцилографи, генератори, підсилювачі, датчики
- •2.7. Лабораторний практикум
- •2.7.1. Лабораторна робота №1 "Визначення величини артеріального тиску за допомогою ємнісного датчика"
- •2.7.2. Лабораторна робота №2 "Напівпровідниковий діод"
- •2.7.3. Лабораторна робота №3 "Вивчення роботи транзистора"
- •2.7.4. Лабораторна робота №4 "Електрофоретичний метод визначення рухливості іонів"
- •3.1. Загальні відомості про електронну медичну апаратуру (ема)
- •3.1.1. Класифікація електронної медичної апаратури
- •3.1.2. Техніка безпеки
- •3.1.3. Правила безпеки
- •3.1.4. Технічні характеристики ема
- •3.2. Семінар "взаємодія електромагнітного поля з біологічними тканинами"
- •3.2.1. Основні характеристики емп
- •3.2.2. Основні процеси, які характеризують дію емп на біологічні тканини
- •3.2.3. Теплова дія емп на бт
- •3.2.4. Специфічна дія емп на біологічні тканини
- •3.3. Лабораторна робота №1 "робота з фізіотерапевтичною апаратурою"
- •3.3.1. Робота з увч-апаратом
- •3.3.2. Ультразвуковий терапевтичний апарат
- •3.3.3. Апарат для дарсонвалізації"Іскра-1"
- •3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
- •3.4.1. Природа електрокардіограми (екг)
- •3.4.2. Завдання до лабораторної роботи
- •3.5. Лабораторна робота №3 "робота з реографом ргч-01"
- •3.5.1. Додаткові теоретичні відомості
- •3.5.2. Стислі технічні характеристики та інструкція з експлуатації реографа ргч-01
- •4.1. Міжмолекулярні взаємодії у біополімерах
- •4.1.1. Класифікація взаємодій у біополімерах
- •4.2. Структурна організація білків та нуклеїнових кислот
- •4.2.1. Первинна структура
- •4.2.2. Вторинна структура
- •4.2.3. Третинна структура
- •4.2.4. Четвертинна структура
- •4.3. Будова і властивості біологічних мембран
- •4.4. Пасивний та активний транспорт речовин крізь мембранні структури клітин
- •4.4.1. Пасивний транспорт незаряджених молекул
- •4.4.2. Пасивний транспорт іонів
- •4.4.3. Активний транспорт
- •4.5. Біологічні потенціали
- •4.5.1. Рівноважний мембранний потенціал Нернста
- •4.5.2. Дифузійний потенціал
- •4.5.3. Потенціал Доннана. Доннанівська рівновага
- •4.5.4. Стаціонарний потенціал Гольдмана-Ходжкіна-Катца
- •4.5.5. Потенціал дії. Механізм виникнення та поширення нервового імпульсу
- •4.6. Лабораторний практикумі
- •4.6.1. Лабораторна робота "Дослідження нелінійних властивостей провідності шкіри жаби"
- •4.6.2. Лабораторна робота "Дослідження дисперсії електричного імпедансу біологічних тканин"
- •4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
- •4.6.4. Практичне заняття "Вивчення біофізики мембран за допомогою комп'ютерних програм"
- •5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
- •5.2. Основи термодинаміки незворотних процесів
- •5.2.1. Лінійний закон
- •5.2.2. Принцип симетрії кінетичних коефіцієнтів і виробництво ентропії
- •5.2.3. Спряження потоків у біологічних системах
- •5.2.4. Стаціонарний стан відкритих систем і теорема Пригожина щодо мінімуму виробництва ентропії
- •5.3. Відкриті медико-бюлогічні системи, що знаходяться далеко від рівноваги (елементи синергетики)
- •5.4. Моделювання процесів у складних медико-бюлопчних системах
- •5.5. Практичне заняття "термодинаміка відкритих біологічних систем"
- •6.1. Інтерференція світла
- •6.1.1. Інтерференція від двох когерентних світлових джерел
- •6.1.2. Історія відкриття явища просвітлення оптики, праці о. Смакули
- •6.1.3. Інші застосування явища інтерференції світла
- •6.2. Дифракція світла
- •6.2.1. Дифракція на щілині в паралельних променях
- •6.2.2. Дифракційна решітка
- •6.2.3. Голографія та її застосування в медицині
- •6.3. Геометрична оптика
- •6.3.1. Ідеальна центрована оптична система
- •6.3.2. Похибки оптичних систем
- •6.3.3. Оптична мікроскопія
- •6.4. Поляризація світла
- •6.4.1. Поляризація світла при відбиванні та заломленні
- •6.4.2. Поляризація при подвійному променезаломленні в кристалах
- •6.4.3. Поляризація світла при проходженні крізь поглинаючі анізотропні речовини
- •6.5. Взаємодія світла з речовиною
- •6.5.1. Дисперсія світла
- •6.5.2. Поглинання світла
- •6.5.3. Розсіяння світла
- •6.6. Фізичні основи термографії, закони теплового випромінювання
- •6.6.1. Закон Кірхгофа
- •6.6.2. Закон випромінювання Планка
- •6.6.3. Закон Стефана-Больцмана
- •6.6.4. Закон зміщення Віна
- •6.6.5. Випромінювання Сонця
- •6.6.6. Інфрачервоне випромінювання
- •6.6.7. Ультрафіолетове випромінювання
- •6.7. Біофізичні основи зорової рецепції
- •6.8. Лабораторний практикум
- •6.8.1. Лабораторна робота "Вивчення мікроскопа та вимірювання мікрооб'єктів"
- •6.8.2. Лабораторна робота "Визначення концентрації розчинів рефрактометричним методом"
- •7.1.1. Місце квантової механіки в системі наук про рух тіл
- •7.1.2. Гіпотеза де Бройля
- •7.1.3. Співвідношення невизначеностей Гейзенберга
- •7.1.4. Основне рівняння квантової механіки - рівняння Шредінгера
- •7.2. Випромінювання та поглинання енергії атомами та молекулами
- •7.2.1. Атомні спектри
- •7.2.2. Молекулярні спектри
- •7.3. Електронний парамагнітний резонанс,
- •7.3.1. Метод електронного парамагнітного резонансу
- •7.3.2. Метод спінових міток (спінових зондів)
- •7.3.3. Спін-імунологічний метод
- •7.3.4. Метод ядерного магнітного резонансу
- •7.4. Практикум 3 квантової механіки
- •7.4.1. Практичне заняття "Основні уявлення квантової механіки"
- •7.4.2. Лабораторна робота "Застосування фотоелемента для виміру освітленості та визначення його чутливості"
- •7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
- •8.1. Рентгенівські промені
- •8.1.1. Історія відкриття рентгенівських променів, праці і. Пулюя
- •8.1.2. Природа рентгенівських променів і методи їх отримання
- •8.1.3. Гальмівне рентгенівське випромінювання
- •8.1.4. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •8.2. Радіоактивне випромінювання
- •8.2.1. Радіоактивність, її властивості
- •8.2.2. Основний закон радіоактивного розпаду, період напіврозпаду, активність
- •8.2.3. Правила зміщення, особливості спектрів при радіоактивному розпаді
- •8.3. Основи дозиметрії іонізуючого випромінювання
- •8.3.1. Експозиційна доза, її потужність, одиниці
- •8.3.2. Поглинена доза, її потужність, одиниці
- •8.3.3. Еквівалентна доза, її потужність, одиниці
- •8.3.4. Дозиметри іонізуючого випромінювання
- •8.4. Взаємодія іонізуючого випромінювання з речовиною
- •8.4.1. Первинні фізичні механізми взаємодії рентгенівського випромінювання з речовиною
- •8.4.2. Первинні механізми дії радіоактивного випромінювання і потоків частинок на речовину
- •8.4.3. Фізико-хімічні механізми радіаційних пошкоджень
- •8.4.4. Ефект дії малих доз іонізуючого випромінювання
- •8.5. Застосування рентгенівського випромівання в медицині
- •8.5.1. Методи рентгенодіагностики
- •8.5.2. Рентгенотерапія
- •8.5.3. Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •8.5.4. Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •8.5.5. Деякі факти реакції крові на опромінення
- •8.5.6. Опромінення малими дозами великих груп людей
- •8.5.7. Латентний період-час виявлення в організмі порушень, викликаних радіацією
- •8.5.8. Проблеми ризику, пов'язаного із радіаційною дією
- •8.6. Комп'ютерна томографія
- •8.6.1. Рентгенівська томографія
- •8.6.2. Ямр-томографія
- •8.6.3. Позитронна емісійна томографія
- •8.7. Практичне заняття "рентгенівське випромінювання, його застосування"
- •8.8.Практичне заняття "радіоактивне випромінювання та його дія на біооб'єкти"
- •8.9. Лабораторна робота "визначення коефіцієнта лінійного послаблення гамма-випромінювання"
- •8.10. Лабораторна робота "робота з дозиметром дргз-04"
- •1. Призначення дозиметра дргз-04
- •2. Склад приладу
- •3. Характеристики дозиметра дргз-04
- •4. Управління роботою дозиметра дргз-04
- •5. Порядок виконання роботи
7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
Мета роботи: вивчити будову та принцип дії газового лазера, визначити основні технічні характеристики лазера -довжину хвилі його випромінювання та енергію кванта.
Прилади та обладнання: гелій-неоновий газовий лазер, дифракційна решітка, екран, міліметрова лінійка.
Питання для підготовки до лабораторної роботи
1. Рівноважна та інверсна заселеність енергетичних рівнів.
2. Індуковане випромінювання.
3. Лазери, принцип дії і застосування в медицині.
Додаткова література
1. Ливенцев Н.М. Курс физики. - М.: Высшая школа, 1978. - Ч. 2.
2. Ремизов А.Н. Медицинская и биологическая физика. - М.: Высшая школа, 1996.
Теоретичні відомості
Розглянемо будову та принцип дії газового гелій-неонового лазера (рис. 7.17). Прилад складається з трубки 1, наповненої сумішшю газів: гелія (під парціальним тиском 1 мм рт. ст.} та неона (під парціальним тиском 0.1 лш рт.
ст.). Атоми неона є випромінюючими (робочими), атоми гелія - допоміжними, які необхідні для створення інверсної заселеності енергетичних рівнів атомів неона. Збудження атомів гелія досягають за допомогою тліючого електричного розряду. Для створення тліючого розряду в трубку 1 вмонтовані електроди 2 і З, під'єднані до джерела електричного струму.
Рис. 7.17. Будова газового гелій-неонового лазера.
На рис. 7.18 зображена система енергетичних рівнів атомів гелію та неона. Під дією електричного розряду атоми гелію переходять на збуджений рівень 2. Внаслідок непруж-ного зіткнення атоми гелія передають енергію атомам неона, які, збуджуючись, накопичуються на двох близько розташованих метастабільних рівнях 3. Таким чином, у трубці створюється середовище з інверсною заселеністю енергетичних рівнів.
Рис. 7.18. Система енергетичних рівнів атомів гелія та неона.
Спонтанний
перехід окремих атомівз
двох метастабільних рівнів 3
на
проміжний рівень 2
викликає
появу фотонів, які спричинюють індуковане
(вимушене) когерентне випромінювання
з довжинами хвиль
нм
(червоний
діапазон) та
(інфрачервоний діапазон). Для збільшення
потужності випромінювання трубку 1
розміщують
в дзеркальному резонаторі (рис. 9.38).
Відбиваючись
від дзеркал і проходячи багато разів
вздовж вісі трубки, потік фотонів залучає
до індукованих переходів дедалі більшу
кількість атомів
внаслідок
чого інтенсивність випромінювання
збільшується. Трубка 1
з
торців закрита плоскопаралельними
пластинками 4,
які
розташовані під кутом Брюстера до вісі
трубки. Таке положення пластинок
призводить до плоскої поляризації
лазерного випромінювання.
Для
визначення довжини хвилі випромінювання
лазера в цій лабораторній роботі
пропонується використати дифракційну
решітку. Вона становить скляну пластинку,
на яку через рівні проміжки а
нанесені
паралельні непрозорі штрихи
шириноюВеличина
називається
періодом (або постійною) дифракційної
решітки. При освітленні решітки
монохроматичним світлом відбувається
явище дифракції, внаслідок якої на
екрані, розташованому за решіткою,
спостерігається дифракційна картина
(рис.7.40).
При нормальному падінні світла на решітку головні дифракційні максимуми характеризуються умовою
де
-
постійна
решітки;
-
довжина
хвилі випромінювання;
-
кут,
на який відхиляються промені, що утворили
даний максимум;
-
ціле
число, що називається порядком максимуму
.
Якщо
нам відомі значення d,
та
то
довжину хвилі випромінювання, що
проходить крізь дифракційну решітку,
визначають за такою формулою:
Оскільки, як правило, кути дифракції φk є малими, можна вважати, що
де-
відстань
на екрані між максимумами нульового та
-того порядків;
-
відстань
між решіткою та екраном.
Порядок виконання лабораторної роботи
Завдання І. Визначити довжину хвилі випромінювання лазера.
1. Розташувати дифракційну решітку та екран перпендикулярнодо вісі лазера (рис. 7.20).
Рис. 7.20. Визначення довжини хвилі лазера за допомогою дифракційної решітки.
2. Переміщуючи екран, отримати на ньому чітке зображення дифракційної картини. При цьому треба домогтися, щоб на екрані спостерігалися максимуми не менше трьох порядків.
3.
Виміряти
за допомогою міліметрової лінійки
відстань
між решіткою та екраном.
4.
Виміряти
відстаньміж
максимумами нульового (центральна
пляма) та першого порядків.
5.
Визначити
значеннядля
максимуму першого порядку.
6.
Визначити
довжину хвилівипромінювання
лазера за формулою
7. Виконати аналогічні виміри та розрахунки для максимумів другого та третього порядків.
8. Результати вимірів та розрахунків занести до таблиці.
Таблиця. Значення відстаней та довжини хвилі
9. Обчислити середнє значення довжини хвилі Я випромінювання лазера.
Завдання 2. Визначити енергію кванта випромінювання лазера за такою формулою:
Контрольні запитання
1. Назвіть основні властивості індукованого випромінювання.
2. Опишіть будову та принцип дії гелій-неонового лазера.
3. Як утворюється інверсна заселеність енергетичних рівнів атомів в гелій-неоновому лазері?
4. Яке призначення має резонатор в газовому лазері?
5. Як можна визначити експериментальне довжину хвилі лазерного випромінювання?
6. Як визначити енергію фотона, що випромінюється лазером?
7. Назвіть області застосування лазера в медицині.
РОЗДІЛ 8. ІОНІЗУЮЧЕ ВИПРОМІНЮВАННЯ ТА ЙОГО ДІЯ НА МЕДИКО-БІОЛОГІЧНІ ОБ'ЄКТИ
"Цю загрозу породила наука, але дійсний ключ до вирішення поставленої перед нами проблеми - в розумі та серцях людей. Немає такої машини, за допомогою якої ми могли б впливати на чужі серця. Для цього потрібно, щоб наші власні серця стали іншими і щоб ми сміливо виказували свої погляди. Лише з ясним розумом і чистим серцем ми зможемо набратися мужності, щоб побороти той страх, який тяжіє над людством".
А. Ейнштейн
Слова, що винесені в епіграф, Альберт Ейнштейн сказав півсторіччя тому, оцінюючи загрозу ядерної війни і відчуваючи свою певну вину перед людством, оскільки він своїми відкриттями ненавмисно сприяв створенню атомної бомби. Ці слова залишаються актуальними і нині в той час, коли робляться відкриття в біології і медицині (зокрема, в генній інженерії), які є видатними як за своїм науковим значенням, так і за своєю загрозою для життя окремих людей і всієї біосфери Землі.
Особлива роль в подоланні небезпечних тенденцій в розвитку сучасної цивілізації належить лікарям. Саме до них передусім слід віднести слова ще одного відомого фізика XX століття Віктора Вайскопфа: "Буття людини спирається одночасно на двох китів, якими є знання і почуття. Але самі почуття без знань не є ефективними, тоді як одні знання без почуттів не с гуманними".
В цьому розділі викладаються фізичні, біофізичні і медичні проблеми, пов'язані з дією іонізуючого випромінювання на людину та інші біооб'єкти. Іонізуюче випромінювання - це загальний термін, що об'єднує альфа-, бета-і гамма-випромінювання, рентгенівське випромінювання та потоки частинок (протонів, нейтронів та ін.). Важко переоцінити значення знань в цій галузі для сучасного лікаря, особливо в зв'язку з тими проблемами, які на довгі часи поставила перед Україною та іншими країнами аварія на Чорнобильській АЕС.