
- •Медична і біологічна фізика Підручник для студентів вищих медичних закладів освіти III - IV рівнів акредитації.
- •1.1. Механічні властивості біологічних тканин
- •1.1.2. Деформація біологічних тканин
- •1.2. Плин в'язких рідин у біологічних системах
- •1.2.1. В'язкість рідини
- •1.2.2. В'язкість крові
- •1.2.3. В'язко-пружні властивості біологічних тканин
- •1.2.4. Основні рівняння руху рідини
- •1.2.5. Критерії механічної подібності рідин, що рухаються
- •1.2.6. Пульсові хвилі
- •1.3. Механічні коливання
- •1.3.1. Гармонічні коливання та їх основні параметри
- •1.3.2. Затухаючі коливання і аперіодичний рух
- •1.3.3. Вимушені коливання
- •1.3.4. Явище резонансу і автоколивання
- •1.3.5. Додавання гармонічних коливань
- •1.4. Механічні хвилі
- •1.4.1. Хвильове рівняння. Поздовжні і поперечні хвилі
- •1.4.2. Потік енергії хвилі. Вектор Умова
- •1.5. Акустика. Елементи фізики слуху. Основи аудіометрії
- •1.5.1. Природа звуку, його основні характеристики (об'єктивні і суб'єктивні)
- •1.5.2. Закон Вебера-Фехнера
- •1.5.3. Ультразвук
- •1.5.4. Інфразвук
- •1.6. Практикум з бюреології
- •1.6.1. Лабораторна робота №1 "Дослідження пружних властивостей біологічних тканин"
- •1.6.2. Лабораторна робота №2 "Визначення коефіцієнта в'язкості"
- •2.1. Електростатика
- •2.1.1. Основні характеристики електричного поля
- •2.1.2. Електричний диполь
- •2.1.3. Діелектрики, поляризація діелектриків
- •2.1.4. Діелектричні властивості біологічних тканин
- •2.1.5. П'єзоелектричний ефект
- •2.2. Постійний струм. Електропровідність біологічних тканин
- •2.2.1. Характеристики електричного струму
- •2.2.2. Електропровідність біологічних тканин ірідин
- •2.2.3. Дія електричного струму на живий організм
- •2.3. Магнітне поле
- •2.3.1. Магнітне поле у вакуумі і його характеристики
- •2.3.2. Закон Біо-Савара-Лапласа
- •2.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •2.3.4. Магнітні властивості речовини
- •2.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •2.4. Електромагнітні коливання
- •2.4.1. Рівняння електричних коливань
- •2.4.2. Вимушені електричні коливання, змінний струм
- •2.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •2.4.4. Імпеданс біологічних тканин
- •2.5. Електромагнітні хвилі
- •2.5.1. Струм зміщення
- •2.5.2. Рівняння Максвелла
- •2.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •2.5.4. Шкала електромагнітних хвиль
- •2.6. Семінар "методика одержання, реєстрації та передачі медико-бюлогічної інформації"
- •2.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •2.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •2.6.3. Осцилографи, генератори, підсилювачі, датчики
- •2.7. Лабораторний практикум
- •2.7.1. Лабораторна робота №1 "Визначення величини артеріального тиску за допомогою ємнісного датчика"
- •2.7.2. Лабораторна робота №2 "Напівпровідниковий діод"
- •2.7.3. Лабораторна робота №3 "Вивчення роботи транзистора"
- •2.7.4. Лабораторна робота №4 "Електрофоретичний метод визначення рухливості іонів"
- •3.1. Загальні відомості про електронну медичну апаратуру (ема)
- •3.1.1. Класифікація електронної медичної апаратури
- •3.1.2. Техніка безпеки
- •3.1.3. Правила безпеки
- •3.1.4. Технічні характеристики ема
- •3.2. Семінар "взаємодія електромагнітного поля з біологічними тканинами"
- •3.2.1. Основні характеристики емп
- •3.2.2. Основні процеси, які характеризують дію емп на біологічні тканини
- •3.2.3. Теплова дія емп на бт
- •3.2.4. Специфічна дія емп на біологічні тканини
- •3.3. Лабораторна робота №1 "робота з фізіотерапевтичною апаратурою"
- •3.3.1. Робота з увч-апаратом
- •3.3.2. Ультразвуковий терапевтичний апарат
- •3.3.3. Апарат для дарсонвалізації"Іскра-1"
- •3.4. Лабораторна робота №2 "робота з електрокардіографом експчт-4"
- •3.4.1. Природа електрокардіограми (екг)
- •3.4.2. Завдання до лабораторної роботи
- •3.5. Лабораторна робота №3 "робота з реографом ргч-01"
- •3.5.1. Додаткові теоретичні відомості
- •3.5.2. Стислі технічні характеристики та інструкція з експлуатації реографа ргч-01
- •4.1. Міжмолекулярні взаємодії у біополімерах
- •4.1.1. Класифікація взаємодій у біополімерах
- •4.2. Структурна організація білків та нуклеїнових кислот
- •4.2.1. Первинна структура
- •4.2.2. Вторинна структура
- •4.2.3. Третинна структура
- •4.2.4. Четвертинна структура
- •4.3. Будова і властивості біологічних мембран
- •4.4. Пасивний та активний транспорт речовин крізь мембранні структури клітин
- •4.4.1. Пасивний транспорт незаряджених молекул
- •4.4.2. Пасивний транспорт іонів
- •4.4.3. Активний транспорт
- •4.5. Біологічні потенціали
- •4.5.1. Рівноважний мембранний потенціал Нернста
- •4.5.2. Дифузійний потенціал
- •4.5.3. Потенціал Доннана. Доннанівська рівновага
- •4.5.4. Стаціонарний потенціал Гольдмана-Ходжкіна-Катца
- •4.5.5. Потенціал дії. Механізм виникнення та поширення нервового імпульсу
- •4.6. Лабораторний практикумі
- •4.6.1. Лабораторна робота "Дослідження нелінійних властивостей провідності шкіри жаби"
- •4.6.2. Лабораторна робота "Дослідження дисперсії електричного імпедансу біологічних тканин"
- •4.6.3. Лабораторна робота "Вимірювання концентраційного потенціалу компенсаційним методом"
- •4.6.4. Практичне заняття "Вивчення біофізики мембран за допомогою комп'ютерних програм"
- •5.1. Відкриті біологічні системи, закони термодинаміки і термодинамічні потенціали
- •5.2. Основи термодинаміки незворотних процесів
- •5.2.1. Лінійний закон
- •5.2.2. Принцип симетрії кінетичних коефіцієнтів і виробництво ентропії
- •5.2.3. Спряження потоків у біологічних системах
- •5.2.4. Стаціонарний стан відкритих систем і теорема Пригожина щодо мінімуму виробництва ентропії
- •5.3. Відкриті медико-бюлогічні системи, що знаходяться далеко від рівноваги (елементи синергетики)
- •5.4. Моделювання процесів у складних медико-бюлопчних системах
- •5.5. Практичне заняття "термодинаміка відкритих біологічних систем"
- •6.1. Інтерференція світла
- •6.1.1. Інтерференція від двох когерентних світлових джерел
- •6.1.2. Історія відкриття явища просвітлення оптики, праці о. Смакули
- •6.1.3. Інші застосування явища інтерференції світла
- •6.2. Дифракція світла
- •6.2.1. Дифракція на щілині в паралельних променях
- •6.2.2. Дифракційна решітка
- •6.2.3. Голографія та її застосування в медицині
- •6.3. Геометрична оптика
- •6.3.1. Ідеальна центрована оптична система
- •6.3.2. Похибки оптичних систем
- •6.3.3. Оптична мікроскопія
- •6.4. Поляризація світла
- •6.4.1. Поляризація світла при відбиванні та заломленні
- •6.4.2. Поляризація при подвійному променезаломленні в кристалах
- •6.4.3. Поляризація світла при проходженні крізь поглинаючі анізотропні речовини
- •6.5. Взаємодія світла з речовиною
- •6.5.1. Дисперсія світла
- •6.5.2. Поглинання світла
- •6.5.3. Розсіяння світла
- •6.6. Фізичні основи термографії, закони теплового випромінювання
- •6.6.1. Закон Кірхгофа
- •6.6.2. Закон випромінювання Планка
- •6.6.3. Закон Стефана-Больцмана
- •6.6.4. Закон зміщення Віна
- •6.6.5. Випромінювання Сонця
- •6.6.6. Інфрачервоне випромінювання
- •6.6.7. Ультрафіолетове випромінювання
- •6.7. Біофізичні основи зорової рецепції
- •6.8. Лабораторний практикум
- •6.8.1. Лабораторна робота "Вивчення мікроскопа та вимірювання мікрооб'єктів"
- •6.8.2. Лабораторна робота "Визначення концентрації розчинів рефрактометричним методом"
- •7.1.1. Місце квантової механіки в системі наук про рух тіл
- •7.1.2. Гіпотеза де Бройля
- •7.1.3. Співвідношення невизначеностей Гейзенберга
- •7.1.4. Основне рівняння квантової механіки - рівняння Шредінгера
- •7.2. Випромінювання та поглинання енергії атомами та молекулами
- •7.2.1. Атомні спектри
- •7.2.2. Молекулярні спектри
- •7.3. Електронний парамагнітний резонанс,
- •7.3.1. Метод електронного парамагнітного резонансу
- •7.3.2. Метод спінових міток (спінових зондів)
- •7.3.3. Спін-імунологічний метод
- •7.3.4. Метод ядерного магнітного резонансу
- •7.4. Практикум 3 квантової механіки
- •7.4.1. Практичне заняття "Основні уявлення квантової механіки"
- •7.4.2. Лабораторна робота "Застосування фотоелемента для виміру освітленості та визначення його чутливості"
- •7.4.3. Лабораторна робота "Вивчення роботи оптичного квантового генератора"
- •8.1. Рентгенівські промені
- •8.1.1. Історія відкриття рентгенівських променів, праці і. Пулюя
- •8.1.2. Природа рентгенівських променів і методи їх отримання
- •8.1.3. Гальмівне рентгенівське випромінювання
- •8.1.4. Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •8.2. Радіоактивне випромінювання
- •8.2.1. Радіоактивність, її властивості
- •8.2.2. Основний закон радіоактивного розпаду, період напіврозпаду, активність
- •8.2.3. Правила зміщення, особливості спектрів при радіоактивному розпаді
- •8.3. Основи дозиметрії іонізуючого випромінювання
- •8.3.1. Експозиційна доза, її потужність, одиниці
- •8.3.2. Поглинена доза, її потужність, одиниці
- •8.3.3. Еквівалентна доза, її потужність, одиниці
- •8.3.4. Дозиметри іонізуючого випромінювання
- •8.4. Взаємодія іонізуючого випромінювання з речовиною
- •8.4.1. Первинні фізичні механізми взаємодії рентгенівського випромінювання з речовиною
- •8.4.2. Первинні механізми дії радіоактивного випромінювання і потоків частинок на речовину
- •8.4.3. Фізико-хімічні механізми радіаційних пошкоджень
- •8.4.4. Ефект дії малих доз іонізуючого випромінювання
- •8.5. Застосування рентгенівського випромівання в медицині
- •8.5.1. Методи рентгенодіагностики
- •8.5.2. Рентгенотерапія
- •8.5.3. Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •8.5.4. Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •8.5.5. Деякі факти реакції крові на опромінення
- •8.5.6. Опромінення малими дозами великих груп людей
- •8.5.7. Латентний період-час виявлення в організмі порушень, викликаних радіацією
- •8.5.8. Проблеми ризику, пов'язаного із радіаційною дією
- •8.6. Комп'ютерна томографія
- •8.6.1. Рентгенівська томографія
- •8.6.2. Ямр-томографія
- •8.6.3. Позитронна емісійна томографія
- •8.7. Практичне заняття "рентгенівське випромінювання, його застосування"
- •8.8.Практичне заняття "радіоактивне випромінювання та його дія на біооб'єкти"
- •8.9. Лабораторна робота "визначення коефіцієнта лінійного послаблення гамма-випромінювання"
- •8.10. Лабораторна робота "робота з дозиметром дргз-04"
- •1. Призначення дозиметра дргз-04
- •2. Склад приладу
- •3. Характеристики дозиметра дргз-04
- •4. Управління роботою дозиметра дргз-04
- •5. Порядок виконання роботи
7.3.4. Метод ядерного магнітного резонансу
Розглянемо основні принципи, що лежать в основі методу ядерного магнітного резонансу (ЯМР), який був відкритий у 1946 році Ф.Блохом і Е.Парселлом. Ядра, що вміщують непарну кількість нуклонів (протонів і нейтронів), мають відмінні від нуля спінові і відповідно магнітні моменти. Такі ядра є парамагнітними частинками.
У зовнішньому магнітному полі система магнітних ядер розпадається на кілька підсистем, відповідно до двох можливих орієнтацій ядерних магнітних моментів відносно напрямку зовнішнього магнітного поля.
Розглянемо окремий випадок ЯМР - протонний магнітний резонанс (ПМР). В цьому разі магнітний момент ядра можна записати так:
де
.-
спінове квантове число ядра (для протона
- ядерний магнетон;
-
"жи-фактор" для ядра.
У
зовнішньому магнітному полі система
протонів розпадається на дві підсистеми
(рис. 7.31) відповідно до двох можливих
орієнтацій магнітних моментів ядер
щодо зовнішнього поля (можливі значення
магнітного спінового числі
Рис. 7.10. Розщеплення енергетичного Рис. 7.11. Механізм ви-
рівня протонів у зовнішньому магнітному никнення локального
полі. магнітного поля в місці
знаходження резонуючого ядра.
Умова резонансного поглинання енергії системою протонів має такий вигляд:
З
наведеного вище можна було б зробити
висновок, що при фіксованій частоті
високочастотного поля всі протони, що
входять до складу молекул, будуть давати
сигнал поглинання при одному і тому
самому значенні індукції магнітного
поляЯкби
це й справді було так, то метод ЯМР не
мав би для хіміків та медиків майже
ніякої цінності. У реальній ситуації
умова ядерного резонансного поглинання
має такий вигляд:
(7.22)
де
-
додаткове локальне магнітне поле, яке
створюється у місці знаходження
резонуючого ядра оточуючими ядрами та
електронами. Таким чином,
визначається
хімічною структурою молекули.
Однією з основних причин виникнення таких полів є ефект діамагнітного екранування: зовнішнє магнітне поле індукує електронні струми в молекулі, які викликають появу магнітних полів, спрямованих за правилом Ленца протилежно зовнішньому магнітному полю , тобто
де
-
стала екранування.
Таким чином, кожний протон знаходиться в деякому ефективному полі, яке характеризується індукцією:
(7.23)
Відмінності
в електронному екрануванні протонів,
що входять до складу молекули, можуть
бути зумовлені різною електронною
густиною. Так, наприклад, протони,
приєднані до електронегативних груп і
атомівгалогенам)
або розміщені поблизу від них, екрануються
слабкіше і дають сигнал ПМР при менших
значеннях індукції В зовнішнього поля.
Спектри
ПМР рідин складаються з порівняно
вузьких ліній, що відповідають
структурно-нееквівалентним протонам,
тобто протонам, що знаходяться в
різнихЯкщо
протони, що входять до складу молекули,
еквівалентні, то спостерігається одна
лінія поглинання (наприклад, для
молекули
У
спектрі ПМР етанолу спостерігаються
три лінії, що відповідають трьом групам
структурно-еквівалентних протонів
- гідроксильному
метиленовим
та метальним
(рис. 7.12).
Рис. 7.12. Спектр ПМР етанола.
Для одержання інформації про досліджувані молекули використовують чотири параметри спектра ПМР:
1. Інтегральна інтенсивність лінії, що визначається площею під кривою поглинання і пропорційна кількості протонів, які знаходяться в даному хімічному оточенні.
2.
Положення лінії, або хімічний зсув, яке
визначається зміщенням лінії
поглинання
протонів
щодо лінії поглинання протонів еталонної
сполуки - тетраметілсилану (ТМС). Величина
хімічного зсуву вимірюється в безрозмірних
одиницях, що називаються мільйонними
частками:
(7.24)
де
-
значення індукції магнітного поля для
сигналу еталона.
3. Ширина смуги, яка визначає, як і в методі ЕПР, характер молекулярного руху.
4.
Спін-спінове розщеплення. При високій
розрізню-вальній здатності приладу
лінії поглинання в спектрі етанолу
розщеплюються на компоненти:
-
на чотири,
- на три,
-
на три. Таке розщеплення називається
спін-спіновим. Воно виникає внаслідок
збурення системи ядерних спінів, для
якої спостерігається лінія поглинання,
іншою спіновою системою. Можна показати,
що система з
еквівалентних
протонів розщеплює лінію іншої системи
протонів на
компоненту.
Рис. 7.13. Спін-спінове розщеплення в спектрі ПМР етанола.
Таким чином, дані про інтегральну інтенсивність, хімічний зсув та спін-спінове розщеплення дають змогу одержати інформацію про наявність в молекулі певних функціональних груп та їх кількість, а також про їх взаємне розміщення. Тому спектри ЯМР є "відбитком пальців" молекули. Поряд з цим, метод ЯМР є нині одним з найбільш перспективних для вивчення міжмолекулярних взаємодій в біологічних системах, оскільки міжмолекулярні взаємодії як електростатичної природи, так і донорно-акцепторного характеру спричинюють перерозподіл електронних густин на взаємодіючих молекулах і відповідно зміни умов екранування, що викликає зміну хімічного зсуву.
Як і ЕПР, метод ЯМР успішно застосовується для дослідження біологічних мембран, оскільки аналіз ЯМР-спектрів мембран дає змогу не тільки визначити, скільки певних функціональних груп вміщує досліджуваний об'єкт, а й встановити по ширині смуг поглинання ступінь рухливості відповідних груп в мембранах.
В останні роки, поряд з рентгенівською томографією, набуває широкого застосовування метод ЯМР-томографії, який забезпечує можливість вивчення різних частин макроскопічного об'єкта на підставі відмінностей сигналу ЯМР, зумовлених градієнтами магнітного поля в різних напрямках. Важливою перевагою ЯМР-томографії є відсутність радіаційних пошкоджень та можливість одержати зображення органів всередині черепа або грудної клітки завдяки прозорості повітря і кісткової тканини для радіохвиль.