Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

шпора цитка

.doc
Скачиваний:
5
Добавлен:
22.02.2015
Размер:
179.2 Кб
Скачать

Основные положения клеточной теории

В 1838-1839 гг. Теодор Шванн и немецкий ботаник Маттиас Шлейден сформулировали основные положения клеточной теории:

1. Клетка есть единица структуры. Все живое состоит из клеток и их производных. Клетки всех организмов гомологичны.

2. Клетка есть единица функции. Функции целостного организма распределены по его клеткам. Совокупная деятельность организма есть сумма жизнедеятельности отдельных клеток.

3. Клетка есть единица роста и развития. В основе роста и развития всех организмов лежит образование клеток.

Клетка – это элементарная биологическая система, обладающая всеми свойствами и признаками жизни. Клетка есть единица структуры, функции и развития организмов.

Единство и разнообразие клеточных типов

Существует два основных морфологических типа клеток, различающиеся по организации генетического аппарата: эукариотический и прокариотический. В свою очередь, по способу питания различают два основных подтипа эукариотических клеток: животную (гетеротрофную) и растительную (автотрофную).

Эукариотическая клетка состоит из трех основных структурных компонентов: ядра, плазмалеммы и цитоплазмы.

Эукариотическая клетка отличается от остальных типов клеток, в первую очередь, наличием ядра. Ядро – это место хранения, воспроизведения и начальной реализации наследственной информации. Ядро состоит из ядерной оболочки, хроматина, ядрышка и ядерного матрикса.

Плазмалемма (плазматическая мембрана) – это биологическая мембрана, покрывающая всю клетку и отграничивающая её живое содержимое от внешней среды. Поверх плазмалеммы часто располагаются разнообразные клеточные оболочки (клеточные стенки). В животных клетках клеточные оболочки, как правило, отсутствуют.

Цитоплазма – это часть живой клетки (протопласта) без плазматической мембраны и ядра. Цитоплазма пространственно разделена на функциональные зоны (компартменты), в которых протекают различные процессы. В состав цитоплазмы входят: цитоплазматический матрикс, цитоскелет, органоиды и включения (иногда включения и содержимое вакуолей к живому веществу цитоплазмы не относят). Все органоиды клетки делятся на немембранные, одномембранные и двумембранные. Вместо термина «органоиды» часто употребляют устаревший термин «органеллы».

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр (центриоли) и органоиды движения (жгутики и реснички). В клетках большинства одноклеточных организмов и подавляющего большинства высших (наземных) растений центриоли отсутствуют.

К одномембранным органоидам относятся: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, вакуоли и некоторые другие. Все одномембранные органоиды связаны между собой в единую вакуолярную систему клетки. В растительных клетках настоящие лизосомы не обнаружены. В то же время в животных клетках отсутствуют настоящие вакуоли.

К двумембранным органоидам относятся митохондрии и пластиды. Эти органоиды являются полуавтономными, поскольку обладают собственной ДНК и собственным белоксинтезирующим аппаратом. Митохондрии имеются практически во всех эукариотических клетках. Пластиды имеются только в растительных клетках.

Прокариотическая клетка не имеет оформленного ядра – его функции выполняет нуклеоид, в состав которого входит кольцевая хромосома. В прокариотической клетке отсутствуют центриоли, а также одномембранные и двумембранные органоиды – их функции выполняют мезосомы (впячивания плазмалеммы). Рибосомы, органоиды движения и оболочки прокариотических клеток имеют специфическое строение.

Клеточная структура

Функция

Бактерии

Растения

Животные

Ядро

Хранение наследственной информации, синтез РНК

Нет

Есть

Есть

Клеточная мембрана

Выполняет барьерную, транспортную, матричную, механическую, рецепторную, энергетическую, ферментативную и маркировочную функции

Есть

Есть

Есть

Капсула

Предохраняет бактерии от повреждений и высыхания. Создаёт дополнительный осмотический барьер и является источником резервных веществ. Препятствует фагоцитозу бактерий

Есть

Нет

Нет

Клеточная стенка

Полисахаридная оболочка над клеточной мембраной, через неё происходит регуляция воды и газов в клетке. Не проницаема даже для мелких молекул. Не препятствует диффузному движению

Есть

Есть

Нет

Контакты между клетками

Связывание между собой клеток ткани. Транспорт веществ между клетками.

Нет

Плазмодесмы

Десмосомы

Хромосома

Нуклеопротеиновый комплекс, содержащий ДНК, а также гистоны и гистоноподобные белки

Нуклеоид

Есть

Есть

Плазмиды

Хранение геномной информации, которая кодирует ферменты, которые разрушают антибиотики, тем самым позволяют избегать их губительного воздействия

Есть

Нет

Нет

Цитоплазма

Содержит в себе органеллы клетки и равномерно распределяет питательные вещества по клетке.

Есть

Есть

Есть

Митохондрии

Органоиды, принимающие участие в превращении энергии в клетке. Имеют внутренние мембраны, на которых осуществляется синтез АТФ

Нет

Есть

Есть

Аппарат Гольджи

Производит синтез сложных белков, полисахаридов, их накопление и секрецию

Нет

Есть

Есть

Эндоплазматический ретикулум

Выполняет синтез и обеспечивает транспорт белков и липидов

Нет

Есть

Есть

Рибосомы

Органоиды, состоящие из двух субъединиц, осуществляют синтез белка (трансляцию).

Есть

Есть

Есть

Центриоль

Во время деления клетки образует веретено деления

Нет

Нет

Есть

Пластиды

Двухмембранные структуры, в которых происходят реакции фотосинтеза (хлоропласты), происходит накопление крахмала (лейкопласты), придают окраску плодам и цветкам (хромопласты)

Нет

Есть

Нет

Лизосомы

Производят расщепление различных органических веществ

Нет

Есть

Есть

Пероксисомы

Производят синтез и транспорт белков и липидов

Нет

Есть

Есть

Вакуоли

Накапливают клеточный сок. Для перемещения бактериальных клеток в толще воды. Поддерживает напряжённое состояние оболочек клеток

Нет

Есть

Нет

Цитоскелет

Опорно-двигательная система клетки. Изменения в белках цитоскелета приводят к изменению формы клетки и расположению в ней органоидов.

Бывает

Есть

Есть

Мезосомы

Артефакты, возникающие во время подготовки образцов для электронной микроскопии

Есть

Нет

Нет

Пили

Служат для прикрепления бактериальной клетки к различным поверхностям

Есть

Нет

Нет

Органеллы для перемещения

Служат для перемещения в пространстве (реснички, жгутики и др.)

Есть

Нет

Есть

Общая характеристика прокариот

Прокариоты, или бактерии – это предъядерные организмы, у которых отсутствует настоящее ядро. К прокариотам относятся настоящие бактерии (эубактерии), архебактерии и цианобактерии.

По типам обмена веществ выделяются следующие группы прокариот: гетеротрофные (свободноживущие и обитающие в других организмах) и автотрофные (фотосинтезирующие и хемосинтезирующие), аэробные и анаэробные.

Тело прокариот, как правило, состоит из одной клетки. Реже встречаются нитчатые и колониальные формы. Форма клеток бактерий изменчива,

Особенности строения прокариотической клетки

В клетках прокариот отсутствуют постоянные двумембранные и одномембранные органоиды: пластиды и митохондрии, эндоплазматическая сеть, аппарат Гольджи и их производные. Их функции выполняют мезосомы – складки плазматической мембраны. У фотоавтотрофных прокариот имеются разнообразные мембранные структуры, на которых протекают реакции фотосинтеза. Иногда их называют бактериальными хроматофорами. Специфическим веществом клеточной стенки прокариот является муреин (у некоторых прокариот муреин отсутствует). По характеру окрашивания клеточной стенки различают грамположительные и грамотрицательные бактерии. Поверх клеточной стенки часто имеется слизистая капсула. Пространство между мембраной и клеточной стенкой служит резервуаром протонов при фотосинтезе и аэробном дыхании.

Генетический аппарат прокариот представлен  бактериальными хромосомами и плазмидами. Бактериальная хромосома – это кольцевая молекула ДНК длиной в несколько миллионов нуклеотидных пар, структура которой стабилизирована молекулами РНК и негистонными белками. Область цитоплазмы, в которой находится бактериальная хромосома, называется нуклеоид. Обычно в бактериальной клетке имеется  одна бактериальная хромосома, в которой локализованы основные гены. Однако существуют прокариоты, у которых бактериальная хромосома представлена множеством копий. Плазмиды – это мелкие кольцевые молекулы ДНК, несущие  дополнительную генетическую информацию. Некоторые плазмиды участвуют в обмене генетической информацией между разными клетками.

 

Размножение бактерий

Бесполое (вегетативное) размножение бактерий происходит путем бинарного деления клеток (дробления). У некоторых видов известен половой процесс (конъюгация). При конъюгации одна из клеток передает генетическую информацию другой клетке. При этом увеличения числа особей не происходит. Перенос генетической информации может происходить с помощью вирусов (трансдукция) или путем прямого переноса ДНК через мембрану (трансформация).

При размножении бактерий в искусственных условиях (в ограниченном объеме питательной среды) в развитии культуры выделяется 4 периода, или фазы.

1 фаза – лаг-фаза. Численность бактерий увеличивается очень медленно (иногда даже снижается). Бактерии как бы осваивают новую среду.

2 фаза – фаза экспоненциального роста. Численность бактерий увеличивается лавинообразно, в геометрической прогрессии.

3 фаза – стационарная фаза. Численность бактерий стабилизируется.

4 фаза – фаза отмирания. Численность бактерий начинает уменьшаться и вскоре активных бактерий не остается. Наличие стационарной фазы и фазы отмирания связано с уменьшением концентрации питательных веществ и накоплением вредных продуктов обмена.

Общая характеристика вирусов

Вирусы – это особая группа организмов с неклеточным строением. Вирусы резко отличаются от других форм жизни. Они способны существовать в двух формах: вне клеток и внутри клеток.

Вне клеток существуют свободные вирусы – вирионы. Вирионы не проявляют свойств биологических систем: у них отсутствует обмен веществ, и они неспособны к самовоспроизведению. Вирионы состоят из нуклеиновых кислот, заключенных в белковую оболочку – капсид.

В состав капсида входит строго определенное количество повторяющихся белковых субъединиц – капсомеров. Например, у вируса полиомиелита в состав капсида входит 60 капсомеров, у аденовируса – 252,  у вируса табачной мозаики – 2000.

Размеры вирусов колеблются от 20 до 350 нм. По морфологии различают следующие формы вирусов: сферическую, палочковидную, кубоидальную, сперматозоидную. По характеру симметрии капсида различают вирусы со спиральным, кубическим (икосаэдрическим) и комбинированным типом симметрии.

Степень сложности вириона может быть различной. У простых вирусов в состав вириона входит только нуклеиновая кислота и белки, которые связаны в единую нуклеопротеиновую структуру – нуклеокапсид. У сложных вирусов имеется дополнительная липопротеиновая оболочка – суперкапсид. В состав сложных вирионов могут входить углеводы и некоторые ферменты. Однако вирусы никогда не содержат метаболических систем, обеспечивающих обмен веществ.

Для собственного воспроизведения вирусы должны проникнуть в клетку. Сначала происходит адсорбция (фиксация) вирионов на поверхности клетки, а затем внутрь клетки проникает или весь вирион или только вирусная нуклеиновая кислота. В большинстве случаев вирусы проникают в клетку путем виропексиса (этот механизм проникновения вирусов в клетку сходен с фагоцитозом).

После проникновения в клетку вирусы вступают в вегетативно-репродуктивную фазу, то есть приобретают способность к обмену веществ и воспроизведению, причем, метаболизм вирусов неразрывно связан с метаболизмом клетки-хозяина. Таким образом, вирусы являются облигатными (обязательными) внутриклеточными паразитами.

В ряде случаев нуклеиновые кислоты вирусов встраиваются (интегрируются) в состав хромосом хозяина. В интегрированном состоянии вирус называется провирусом. Провирусы неотличимы от генетического материала хозяина и воспроизводится вместе с ним.

В интегрированном (вирогенном) состоянии вирусы могут находиться долгое время. Но в ряде случаев (при изменении физиологического состояния клетки, например, при облучении) начинается репродукция вируса. С помощью ферментов и пластических веществ клетки идет репликация вирусных нуклеиновых кислот и вирусных белков. Путем самосборки из этих молекул формируется множество вирионов, которые покидают клетку. При этом клетка может погибнуть или сохраниться.

Основные группы вирусов

В настоящее время известно свыше 800 видов вирусов. Вирусы классифицируются по носителям наследственной информации (ДНК-содержащие и РНК-содержащие) и по хозяевам (вирусы растений, вирусы грибов, вирусы животных и вирусы прокариот, или бактериофаги).

 

ДНК-содержащие вирусы

К ДНК-содержащим вирусам относятся многие вирусы бактерий – бактериофаги (или просто фаги). Некоторые мелкие фаги (например, фаг М13) при репродукции не разрушают клетку. Репродукция крупных фагов (например, фага Т–4) приводит к гибели клетки. Фаг Т–4 – это один из наиболее сложно организованных вирусов. Белковый капсид включает не менее 130 белков, образующих головку, воротничок, сократимый хвост, базальную пластинку и хвостовые нити. Такое строение капсида позволяет впрыскивать ДНК в бактериальную клетку через толстую оболочку, поэтому подобные вирусы образно называют «живыми шприцами». Т–фаги могут существовать в виде профага длительное время.

В состав генетического аппарата ДНК-содержащих вирусов может входить либо кольцевая, либо линейная ДНК. Эта ДНК может быть одноцепочечной или двухцепочечной. Реже ДНК представлена двумя частично перекрывающимися полукольцами (например, у вируса гепатита В).

Вирусная РНК обычно одноцепочечная, реже – двухцепочечная. Среди вирусов с одноцепочечной РНК выделяют несколько групп.

Первая группа – это вирусы, содержащие плюс-цепь РНК (мРНК). Плюс-цепь сразу же может использоваться для трансляции. Представители: ВТМ, вирус клещевого энцефалита, вирус желтой лихорадки, вирус бешенства, некоторые бактериофаги. Вегетативно-репродуктивная фаза этих вирусов протекает в цитоплазме. В плюс-цепи закодирована РНК-репликаза (РНК-зависимая РНК-полимераза).

Вторая группа – это вирусы, содержащие минус-цепь РНК (кРНК). Минус-цепь не может служить для трансляции. Представители: вирусы кори, бешенства, гриппа А, В, С. Вегетативно-репродуктивная фаза этих вирусов также протекает в цитоплазме. У вируса гриппа РНК состоит из 8 фрагментов, которые, будучи связаны с вирусными белками, образуют спиральный нуклеокапсид, Поверх нуклеокапсида располагается гликолипопротеиновый суперкапсид. В состав суперкапсида входит два белка, определяющих антигенные свойства вируса: гемагглютинин и нейраминидаза. Кроме того, в состав вириона входит уже готовая РНК-репликаза, обеспечивающая синтез плюс-цепи на матрице минус-цепи. Плюс-цепь служит для трансляции вирусных белков и используется как матрица для синтеза вирусной кРНК.

Третью группу образуют ретровирусы. В состав вирионов входит фермент обратная транскриптаза (ревертаза). Многие ретровирусы вызывают онкологические заболевания: лейкозы, саркомы, опухоли молочных желез. К ретровирусам относится и вирус иммунодефицита человека, вызывающий СПИД.

Структурные компоненты эукариотической клетки

К структурным компонентам эукариотической клетки относятся ядро, плазмалемма и цитоплазма.

Ядро клетки – это место хранения, воспроизведения и начальной реализации  наследственной информации в эукариотической клетке.

В клетках прокариот (эубактерии, цианобактерии, архебактерии) оформленного ядра нет, его функции выполняет нуклеоид, основу которого составляет бактериальная хромосома. Дополнительными носителями генетической информации у прокариот являются плазмиды – мелкие кольцевые молекулы ДНК.

Некоторые специализированные клетки лишены ядра (например, зрелые эритроциты млекопитающих, ситовидные трубки растений). Клетки, искусственно лишенные ядра, называются энуклеированными. Энуклеированные клетки утрачивают способность к делению, а продолжительность их жизни резко сокращается.

Ядро эукариотической клетки может иметь различную форму: округлую, эллипсоидальную, продолговатую (палочковидную, нитевидную), сегментированную. Как правило, в клетке имеется одно ядро. Однако известны многоядерные клетки: например, инфузории-туфельки имеют два ядра (макро- и микронуклеус), а в клетках других низших эукариот может содержаться несколько десятков и сотен ядер.

Ядро состоит из ядерной оболочки, ядерного матрикса, хромосом (хроматина) и ядрышка.

Ядерная оболочка состоит из двойной ядерной мембраны, связанной с другими внутриклеточными мембранами (с эндоплазматической сетью, с митохондриями, с аппаратом Гольджи, с хроматофорами у некоторых водорослей). Ядерная оболочка отграничивает содержимое ядра от цитоплазмы, обеспечивает его целостность и, в то же время, связывает ядро с другими частями клетки. Область между двумя мембранами ядерной оболочки называется перинуклеарным пространством. Перинуклеарное пространство связывает ядро с полостями других органоидов, в первую очередь, с эндоплазматической сетью. Ядерная оболочка пронизана порами – отверстиями, через которые могут проходить крупные молекулы и молекулярные комплексы.

Ядерный матрикс (ядерный сок, кариоплазма, нуклеоплазма) – это основное вещество ядра. Включает водорастворимую фазу, а также фибриллярные структуры и гранулы.

Хроматин – совокупность интерфазных хромосом (интерфаза – это состояние клетки между делениями). Это главный компонент ядра. В состав хроматина входят: ДНК, РНК, белки и неорганические ионы. Среди белков важное место занимают специфические белки-гистоны, образующие устойчивые нуклеопротеиновые комплексы с ДНК.

Ядрышко, или нуклеола (открыто М. Шлейденом) – это компактная структура, основой которой являются определенные участки хромосом (вторичные перетяжки, или ядрышковые организаторы). Число ядрышек в ядре зависит от видовой и тканевой принадлежности клеток и от их физиологического состояния; обычно видно 1...2 ядрышка. При делении клетки ядрышко обычно разрушается, а затем формируется заново. Ядрышко контролирует синтез рРНК и первичную сборку рибосом.

В ядрышке выделяются две области: фибриллярная и гранулярная. Фибриллярная область содержит внутриядрышковый хроматин (состоит из ДНК ядрышковых организаторов хромосом) и незрелые молекулы рРНК. Гранулярная область представлена предшественниками больших и малых субъединиц рибосом. В фибриллярной области происходит синтез рРНК, а в гранулярной – первичная сборка рибосом. Окончательная сборка рибосом происходит в цитоплазме.

Плазматическая мембрана (плазмалемма)

Плазматическая мембрана, или плазмалемма – это биологическая мембрана, покрывающая всю клетку

Строение и функции мембран

Согласно жидкостно-мозаичной модели, основу всех биологических мембран составляет фосфолипидный бислой толщиной 7...10 нм, основным компонентом которого являются фосфодиацилглицерины. Кроме того, у животных в состав мембран входят сфингомиелины и холестерин.

Гидрофильные глицерофосфатные части молекул фосфолипидов находятся на внешних поверхностях бислоя. Гидрофобные углеводородные части молекул фосфолипидов направлены вовнутрь бислоя. Связи между молекулами, обусловленные наличием гидрофобных участков, называются гидрофобными. Биологические мембраны всегда замыкаются на себя, у них нет краев.

В состав мембран входят разнообразные белки. Они представлены простыми и сложными белками. По отношению к мембране выделяют три основных типа белков: периферические (гидрофильные, расположены на поверхности мембран), интегральные (гидрофобные, расположены в толще бислоя) и политопические (со смешанными свойствами, пронизывают мембрану насквозь).

В состав мембран входят углеводы (гликопротеины и гликолипиды). Основная часть углеводов плазмалеммы расположена на ее внешней стороне и образует гликолипопротеиновый слой – гликокаликс – комплекс биополимеров на внешней поверхности плазмалеммы, характерный для животных. В состав гликокаликса входят гликопротеины и гликолипиды. Гликокаликс обеспечивает информационный обмен между клеткой и внеклеточной средой. В организме высших позвоночных гликокаликс приобретает антигенные свойства, то есть способен регулировать синтез антител.

Биологические мембраны характеризуются высокой устойчивостью и, в то же время, пластичностью. Отдельные блоки мембраны способны перемещаться относительно друг друга. При повреждениях мембраны она способна к самовосстановлению.

Основным свойством биологических мембран является их избирательная проницаемость. Благодаря избирательной проницаемости плазмалемма может выполнять различные функции:

1. Барьерная функция. Плазмалемма отграничивает содержимое клетки от окружающей среды.

2. Транспортная функция. Плазмалемма обеспечивает транспорт веществ из клетки и в клетку.

3. Энерготрансформирующая функция. Плазмалемма обеспечивает превращение одной формы энергии в другую.

4. Информационно-сигнальная функция. Плазмалемма обеспечивает информационный обмен клетки с внешней средой.

 

Клеточные оболочки

С внешней стороны мембраны часто формируются надмембранные структуры – клеточные оболочки, или клеточные стенки. Основные функции клеточных оболочек: механическая и защитная. У животных клеточные оболочки, как правило, отсутствуют. Существует несколько основных типов клеточных оболочек:

1. У прокариот клеточная оболочка многослойная. Внутренний слой построен на основе муреина. Внешние слои имеют разнообразный химический состав. У многих видов имеется слизистая капсула из полисахаридов.

2. У большинства низших эукариот (у водорослей, у низших грибов и грибоподобных организмов) клеточная оболочка состоит из  целлюлозы (клетчатки) и гемицеллюлоз (целлюлозоподобных веществ).

3. У высших грибов клеточная оболочка содержит грибную клетчатку, лигнин и хитин (у дрожжеподобных грибов лигнина и хитина почти нет).

4. У высших растений первичная клеточная оболочка состоит из целлюлозы (клетчатки). Вторичные оболочки содержат суберин или лигнин. Смежные клетки разделены срединными пластинками из пектинов. У многих низших и высших растений в состав оболочек входят минеральные вещества: кремнезем, известь и др.

Межклеточные контакты. Плазматические мембраны обеспечивают различные типы межклеточных контактов: простые щелевидные контакты, межклеточные «замки», десмосомы и плотные контакты в эпителиальных тканях, синапсы.

Наличие толстых клеточных стенок у грибов и растений затрудняет контакт между клетками. Поэтому клеточные стенки обычно пронизаны порами, через которые проходят тяжи цитоплазмы – плазмодесмы. Через плазмодесмы эндоплазматическая сеть одной клетки переходит в эндоплазматическую сеть смежных клеток.

 

Транспорт веществ через мембраны

Крупные частицы поглощаются клеткой путем фагоцитоза, а капли раствора – путем пиноцитоза. Фаго- и пиноцитоз объединяются под общим названием эндоцитоз. Эндоцитоз характерен для специализированных клеток амебоидного типа. Эндоцитозу предшествует фиксация молекул и частиц на внешней поверхности мембраны с помощью специфических и неспецифических рецепторов.

Транспорт частиц и капель раствора из клетки наружу называется экзоцитоз. При экзоцитозе образуются экзоцитозные пузырьки из внутриклеточных мембран, которые, приближаясь к плазмалемме, изменяют ее поверхностное натяжение.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]