
- •Вариант № 1
- •Вариант № 2
- •Вариант № 3
- •Вариант № 4
- •Вариант № 5
- •Вариант № 6
- •Вариант № 7
- •Вариант № 8
- •Вариант № 9
- •Вариант № 10
- •Вариант № 11
- •Вариант № 12
- •Вариант № 13
- •Вариант № 14
- •Вариант № 15
- •Вариант № 16
- •Вариант № 17
- •Вариант № 18
- •Вариант № 19
- •Вариант № 20
- •Вариант № 21
- •Вариант № 22
- •Вариант № 23
- •Вариант № 24
- •Вариант № 25
- •Вариант № 26
- •Вариант № 27
- •Вариант № 28
- •Вариант № 29
- •Вариант № 30
- •Вариант № 31
Вариант № 4
№ 1. Найти
разложение вектора
по векторам:
.
№ 2. Проверить,
коллинеарны ли векторы
,
если
.
№ 3. Даны векторы:
и число
.
Найти:
а) при каких значениях
и векторы
компланарны;
б) длину и направляющие
косинусы вектора
;
в) вектор
,
который перпендикулярен векторам
.
№ 4. Даны векторы:
и число
.
Вычислить:
а) скалярное
произведение векторов
;
б) модуль векторного
произведения
;
в) работу, совершаемую
силой
на пути
;
г) проекцию вектора
на вектор
;
д) площадь треугольника,
построенного на векторах
,
если начало вектора
помещено
в конец вектора
.
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(2, 1, 4), A2(–1, 5, –2),
A3(–7, –3, 2), A4 (–6, –3, 6). Найти:
а)
;
б) площадь граниA1
A2
A3;
в)
;
г)
;
д) объём пирамиды.
№ 6. Найти проекцию
вектора
на ось, определяемую вектором
,
если
и
заданы разложением по взаимно
перпендикулярным ортам
и
.
№ 7. Найти
неизвестную координату вектора
,
если
составляет
острый угол с осью,
одноименной
неизвестной координате, и задан модуль
вектора
.
№ 8. Найти модуль
вектора
,
если
.
№ 9. Задан вектор
силы
и координаты точек: т.A
(–3,2,4)
и т. B
(–1,4, 5).
Найти:
а)
работу заданной силы
по
перемещению тела из
точки A
в точку B;
б) модуль момента
силы
,
приложенной в точкеA,
относительно
точки B.
№ 10. Вычислить
проекции вектора
на оси координат, еслиA
(1,
–1, 8),
B (–2, 4, 1),C (1, –4, 4).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 5
№ 1. Найти
разложение вектора
по векторам:
.
№ 2. Проверить,
коллинеарны ли векторы
,
если
.
№ 3. Даны векторы:
и число
.
Найти:
а) при каких значениях
и векторы
компланарны;
б) длину и направляющие
косинусы вектора
;
в) вектор
,
который перпендикулярен векторам
.
№ 4. Даны векторы:
и число
.
Вычислить:
а) скалярное
произведение векторов
;
б) модуль векторного
произведения
;
в) работу, совершаемую
силой
на пути
;
г) проекцию вектора
на вектор
;
д) площадь треугольника,
построенного на векторах
,
если начало вектора
помещено
в конец вектора
.
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(–1, –5, 2), A2(–6, 0, –3),
A3(3, 6, –3), A4 (–10, 6, 7). Найти:
а)
;
б) площадь граниA1
A2
A3;
в)
;
г)
;
д) объём пирамиды.
№ 6. Найти проекцию
вектора
на ось, определяемую вектором
,
если
и
заданы разложением по взаимно
перпендикулярным ортам
и
.
№ 7. Найти
неизвестную координату вектора
,
если
составляет
острый угол с осью,
одноименной
неизвестной координате, и задан модуль
вектора
.
№ 8. Найти модуль
вектора
,
если
.
№ 9. Задан вектор
силы
и координаты точек: т.A
(–1,0,–1)
и т. B
(2,2, 2).
Найти:
а)
работу заданной силы
по
перемещению тела из
точки A
в точку B;
б) модуль момента
силы
,
приложенной в точкеA,
относительно
точки B.
№ 10. Вычислить
проекции вектора
на оси координат, еслиA
(1,
–2, 3),
B (0, –1, 2),C (3, –4, 5).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 6
№ 1. Найти
разложение вектора
по векторам:
.
№ 2. Проверить,
коллинеарны ли векторы
,
если
.
№ 3. Даны векторы:
и число
.
Найти:
а) при каких значениях
и векторы
компланарны;
б) длину и направляющие
косинусы вектора
;
в) вектор
,
который перпендикулярен векторам
.
№ 4. Даны векторы:
и число
.
Вычислить:
а) скалярное
произведение векторов
;
б) модуль векторного
произведения
;
в) работу, совершаемую
силой
на пути
;
г) проекцию вектора
на вектор
;
д) площадь треугольника,
построенного на векторах
,
если начало вектора
помещено
в конец вектора
.
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(0, –1, –1), A2(–2, 3, 5),
A3(1, –5, –9), A4 (–1, –6, 3). Найти:
а)
;
б) площадь граниA1
A2
A3;
в)
;
г)
;
д) объём пирамиды.
№ 6. Найти проекцию
вектора
на ось, определяемую вектором
,
если
и
заданы разложением по взаимно
перпендикулярным ортам
и
.
№ 7. Найти
неизвестную координату вектора
,
если
составляет
острый угол с осью,
одноименной
неизвестной координате, и задан модуль
вектора
.
№ 8. Найти модуль
вектора
,
если
.
№ 9. Задан вектор
силы
и координаты точек: т.A
(2,3,4)
и т. B
(3,1, –1).
Найти:
а)
работу заданной силы
по
перемещению тела из
точки A
в точку B;
б) модуль момента
силы
,
приложенной в точкеA,
относительно
точки B.
№ 10. Вычислить
проекции вектора
на оси координат, еслиA
(0,
–3, 6),
B (–12, –3, –3),C (–9, –3, –6).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ