
- •Вариант № 1
- •Вариант № 2
- •Вариант № 3
- •Вариант № 4
- •Вариант № 5
- •Вариант № 6
- •Вариант № 7
- •Вариант № 8
- •Вариант № 9
- •Вариант № 10
- •Вариант № 11
- •Вариант № 12
- •Вариант № 13
- •Вариант № 14
- •Вариант № 15
- •Вариант № 16
- •Вариант № 17
- •Вариант № 18
- •Вариант № 19
- •Вариант № 20
- •Вариант № 21
- •Вариант № 22
- •Вариант № 23
- •Вариант № 24
- •Вариант № 25
- •Вариант № 26
- •Вариант № 27
- •Вариант № 28
- •Вариант № 29
- •Вариант № 30
- •Вариант № 31
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 1
№ 1. Найти
разложение вектора
по векторам:
.
№ 2. Проверить,
коллинеарны ли векторы
,
если
.
№ 3. Даны векторы:
и число
.
Найти:
а) при каких значениях
и векторы
компланарны;
б) длину и направляющие
косинусы вектора
;
в) вектор
,
который перпендикулярен векторам
.
№ 4. Даны векторы:
и число
.
Вычислить:
а) скалярное
произведение векторов
;
б) модуль векторного
произведения
;
в) работу, совершаемую
силой
на пути
;
г) проекцию вектора
на вектор
;
д) площадь треугольника,
построенного на векторах
,
если начало вектора
помещено
в конец вектора
.
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(1, 3, 6), A2(2, 2, 1), A3(–1, 0, 1),
A4 (–4, 6, –3). Найти:
а)
;
б) площадь граниA1
A2
A3;
в)
;
г)
;
д) объём пирамиды.
№ 6. Найти проекцию
вектора
на ось, определяемую вектором
,
если
и
заданы разложением по взаимно
перпендикулярным ортам
и
.
№ 7. Найти
неизвестную координату вектора
,
если
составляет
острый угол с осью,
одноименной
неизвестной координате, и задан модуль
вектора
.
№ 8. Найти модуль
вектора
,
если
.
№ 9. Задан вектор
силы
и координаты точек: т.A
(2,–1,3)
и т. B
(0,–3, 2).
Найти:
а)
работу заданной силы
по
перемещению тела из
точки A
в точку B;
б) модуль момента
силы
,
приложенной в точкеA,
относительно
точки B.
№ 10. Вычислить
проекции вектора
на оси координат, еслиA
(–3,
4, –7),
B (1, 5, –4),C (2, 7, –10).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 2
№ 1. Найти
разложение вектора
по векторам:
.
№ 2. Проверить,
коллинеарны ли векторы
,
если
.
№ 3. Даны векторы:
и число
.
Найти:
а) при каких значениях
и векторы
компланарны;
б) длину и направляющие
косинусы вектора
;
в) вектор
,
который перпендикулярен векторам
.
№ 4. Даны векторы:
и число
.
Вычислить:
а) скалярное
произведение векторов
;
б) модуль векторного
произведения
;
в) работу, совершаемую
силой
на пути
;
г) проекцию вектора
на вектор
;
д) площадь треугольника,
построенного на векторах
,
если начало вектора
помещено
в конец вектора
.
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(–4, 2, 6), A2(2, –3, 0),
A3(–10, 5, 8), A4 (–5, 2, –4). Найти:
а)
;
б) площадь граниA1
A2
A3;
в)
;
г)
;
д) объём пирамиды.
№ 6. Найти проекцию
вектора
на ось, определяемую вектором
,
если
и
заданы разложением по взаимно
перпендикулярным ортам
и
.
№ 7. Найти
неизвестную координату вектора
,
если
составляет
острый угол с осью,
одноименной
неизвестной координате, и задан модуль
вектора
.
№ 8. Найти модуль
вектора
,
если
.
№ 9. Задан вектор
силы
и координаты точек: т.A
(–1,3,4)
и т. B
(2,6, 1).
Найти:
а)
работу заданной силы
по
перемещению тела из
точки A
в точку B;
б) модуль момента
силы
,
приложенной в точкеA,
относительно
точки B.
№ 10. Вычислить
проекции вектора
на оси координат, еслиA
(4,
–2, 0),
B (1, –1, –5),C (–2, 1, –3).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 3
№ 1. Найти
разложение вектора
по векторам:
.
№ 2. Проверить,
коллинеарны ли векторы
,
если
.
№ 3. Даны векторы:
и число
.
Найти:
а) при каких значениях
и векторы
компланарны;
б) длину и направляющие
косинусы вектора
;
в) вектор
,
который перпендикулярен векторам
.
№ 4. Даны векторы:
и число
.
Вычислить:
а) скалярное
произведение векторов
;
б) модуль векторного
произведения
;
в) работу, совершаемую
силой
на пути
;
г) проекцию вектора
на вектор
;
д) площадь треугольника,
построенного на векторах
,
если начало вектора
помещено
в конец вектора
.
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1(7, 2, 4), A2(7, –1, –2), A3(3, 3, 1),
A4 (–4, 2, 1). Найти:
а)
;
б) площадь граниA1
A2
A3;
в)
;
г)
;
д) объём пирамиды.
№ 6. Найти проекцию
вектора
на ось, определяемую вектором
,
если
и
заданы разложением по взаимно
перпендикулярным ортам
и
.
№ 7. Найти
неизвестную координату вектора
,
если
составляет
острый угол с осью,
одноименной
неизвестной координате, и задан модуль
вектора
.
№ 8. Найти модуль
вектора
,
если
.
№ 9. Задан вектор
силы
и координаты точек: т.A
(1,–1,5)
и т. B
(–2,1, –3).
Найти:
а)
работу заданной силы
по
перемещению тела из
точки A
в точку B;
б) модуль момента
силы
,
приложенной в точкеA,
относительно
точки B.
№ 10. Вычислить
проекции вектора
на оси координат, еслиA
(1,
4, 3),
B (–1, 3, 8),C (6, 6, –4).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ