Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Общая Геология 2

.pdf
Скачиваний:
65
Добавлен:
13.02.2015
Размер:
26.13 Mб
Скачать

Поведение волн в прибрежных районах резко отличается от такового в открытом океане. Как только глубина воды становится меньше четверти длины волны, последняя касается дна и круговые движения частиц воды становятся эллипсоидальными, уплощаясь ко дну, а на самом дне движения осуществляются только назад-вперед и скорость волны у дна резко замедляется. Скорость гребня волны опережает скорость в ее подошве, длина волны уменьшается, но сразу увеличивается ее высота и крутизна склона, обращенного к берегу. Верхняя часть волны забурунивается и опрокидывается на ее передний склон, который всегда используют любители виндсёрфинга, скользя с него как с горы.

Наконец, волна всей тяжестью гребня обрушивается на отмелый берег, таща за собой песок и гальку и формируя широкую полосу пляжа. Если волна подходит к приглубому берегу, то она всей своей массой ударяет в береговую кромку или обрыв, разрушая его.

Нельзя не упомянуть о таком явлении, как нагон воды при сильных и длительно дующих в сторону суши ветрах в районах низменных побережий. При таких процессах вода как бы сдувается с поверхностного слоя и перемещается, создавая подъем уровня. Так, с нагонами связаны наводнения в Санкт-Петербурге, когда ветер дует с запада на восток вдоль Финского залива. В Мексиканском заливе высота нагонных волн достигает 5 м, в Бенгальском - 6, в Северном Каспии 2-3 м.

14.3. Рельеф океанского дна.

21 декабря 1872 г. в 10 ч. утра начались промеры глубины океана с океанографического экспедиционного судна “Челленджер”, плавание которого продолжалось 4 года. Измерения велись канатом с грузом и когда ряд промеров соединили линией, то получили рельеф океанского дна. Всего было сделано 500 промеров. В конце 30-х годов нашего века, во время знаменитого дрейфа Папанинцев на льдине в районе Северного полюса измерения глубины Ледовитого океана проводили с помощью лебедки и троса с грузом.

Ситуация резко изменилась с изобретением эхолота, принцип действия которого ясен из рис. 14.3.1.

Рис. 14.3.1. Принцип действия эхолота. Звуковой сигнал отражается от дна и принимается снова на корабле. Зная скорость звука в воде и разделив время прохождения звукового сигнала на 2, получают глубину океана

В 1925-1927 гг. с его помощью был открыт в Южной Атлантике Срединно-Атлантический хребет немецкой экспедицией на “Метеоре”. Сотни тысяч промеров, профилей и т.д., сделанных со времени начала применения эхолота, позволили в 1963 г. Б.Хизену и М.Тарп составить подробную карту рельефа Мирового океана.

Распределение площадей по высотным уровням Земного шара дает гипсометрическая кривая, из которой следует, что средняя высота суши всего 840 м, тогда как средняя глубина океана 3800 м. Из этой же кривой следует, что почти 21% поверхности Земли занято сушей с высотами меньше 1000 м, а в океанах 53,5% площади - это глубины от 3000 до 6000 м. Средний уровень рельефа континентов находится на 4600 м выше среднего уровня рельефа дна океанов, что отражает особенности строения континентальной коры (рис. 14.3.2).

К основным формам рельефа океанского дна относятся: 1) срединно-океанские хребты, 2) континентальные окраины и 3) глубоководные или абиссальные котловины.

Срединно-океанские хребты имеют общую протяженность до 60 000 км, прослеживаясь во всех океанах и обладают средней глубиной около 2,5 км. Как правило, они располагаются с середине океанов, за исключением Тихого, где хребет смещен к его восточной окраине.

Хребты представляют собой хорошо выраженное, пологое сводовое поднятие, возвышающееся над дном глубоководных котловин в среднем на 2 км, имея ширину до 1000 км. Обе стороны хребта симметричны и обладают умеренно расчлененным рельефом. Осадочный покров появляется только на флангах хребта и его мощность постепенно увеличивается в стороны от гребня. По простиранию рельеф хребтов может изменяться, Восточно-Тихоокеанский хребет отличается от всех остальных своей шириной - до 4000 км и высотой в 2-4 км над дном абиссальных котловин, а, кроме того, вдоль его оси отсутствует ярко выраженная у других хребтов щель, т.н. рифтовая (рифт – расселина, ущелье, англ.) долина (рис. 14.3.3). Например, в Срединно-Атлантическом хребте, рифт выражен глубоким, в 1-2 км ущельем, шириной в 20-40 км, впервые открытым Б.Хизеном из Ламонтской обсерватории США. Внутри главного рифта находится более узкий, всего в несколько км рифт, в котором наблюдается холмистый рельеф, образованный недавно излившимися лавами - базальтами. В редких местах, как, например, в Исландии, рифтовый хребет выходит на поверхность и его можно изучать

обычными геологическими методами. На дне узкого внутреннего рифта наблюдаются открытые молодые трещины - гьяры.

Рис. 14.3.2. Распределение площадей по высотным уровням. Гипсографическая кривая поверхности Земли, построенная по гистограмме частоты встречаемости (слева), показывает долю ( в %) поверхности, лежащей выше или ниже любого уровня ( по

W.A.Anikuchine, R.W.Sternberg, 1973)

Еще одной замечательной особенностью срединно-океанических хребтов является огромное количество параллельных разломов, пересекающих хребет перпендикулярно его оси и смещающих осевую рифтовую долину (рис. 14.3.4). Такие разломы называются трансформными и нередко представляют собой глубокие ущелья,

Рис. 14.3.3 Характерные профили рельефа рифтовой зоны СОХ с различными скоростями спрединга. Неовулканическая зона ограничена символами V, а зона трещиноватости – F, отметки ГП определяют зону границы плиты

Рис. 14.3.4. Трансформный разлом. 1 – рифтовая долина, 2 – трансформный разлом, 3 – эпицентры землетрясений, 4 – направление перемещения масс

с уступами, крутыми склонами, пересекающими не только сами хребты, но и дно прилегающих глубоководных котловин. Длина разломов достигает 3500 км, а амплитуда вертикального смещения от нескольких сот метров до 4 км. Величина горизонтального смещения превышает 3800-4000 км, за счет чего хребет изгибается наподобие буквы S.

Осевые зоны срединно-океанических хребтов обладают повышенной сейсмичностью, неглубоким расположением очагов землетрясений, а в трансформных

разломах сейсмически активным оказывается отрезок между двумя смещенными участками рифтовой долины хребта.

Глубоководные котловины расположены между континентальными окраинами и срединно-океаническими хребтами и подразделяются на 3 типа: 1)плоские и слабохолмистые равнины; 2) подводные возвышенности; 3) подводные одиночные горы и группы гор.

1.Плоские абиссальные равнины в глубоководных котловинах встречаются во многих океанах, они обладают очень ровным дном, шириной до 2000 км, иногда со слабым уклоном, не превышающим 1 м на сформированной за счет выноса материала с суши.

2.Котловины с подводными возвышенностями или холмами широко распространены в Тихом океане, где занимают до 85% его площади, хотя встречаются и в других океанах. Дно таких котловин покрыто овальными холмами высотой до 1 км и диаметром до 10-50 км, частично погребенными под осадочным чехлом. Холмы часто располагаются группами и реже поодиночке.

3.Подводные горы представлены, как правило, вулканами и располагаются либо поодиночке, либо группами, обладают типичной для вулканов конусовидной формой. Основания вулканов погребены под осадочными толщами. Если вулканов много, они могут сливаться в протяженные хребты, как, например, Гавайский или Имераторский хребты в Тихом океане. Вулканические горы, поднимаясь выше уровня моря постепенно разрушаются абразией и на них формируется плато. В дальнейшем, в связи с опусканием океанического дна, они оказываются под поверхностью воды. Такие плосковершинные горы - гайоты, были открыты в 1940 г. Хессом, и особенно широко развиты в северозападной части Тихого океана.

Континентальные окраины подразделяются на два главных типа. Один из них это

окраины Атлантического типа или пассивные окраины, второй - окраины Тихоокеанского типа или активные. Разделение на Атлантический и Тихоокеанский типы было предложено еще Э.Зюссом в 1883 г. Окраины 1-го типа - это непрерывно, с момента образования, погружающиеся края континентов, на которых накопилась мощная толща осадочных отложений, в основном за счет материала, сносимого с суши. Вулканизм и сейсмичность отсутстсвуют.

Окраины 2-го типа характеризуются наличием расчлененного рельефа, присутствием глубоководных желобов, островных дуг с активным вулканизмом и высокой сейсмичностью, иногда наличием окраинных морей, высокой тектонической

активностью и присутствием наклоненной от глубоководного желоба под континент зоны гипоцентров (очагов) землетрясений до глубины 700 км.

Из вышеизложенного четко видна разница между двумя типами континентальных окраин. Одна, действительно, лишь пассивно опускается, вторая испытывает активные тектонические движения и вулканизм.

Окраины Атлантического типа (пассивные) образовались в результате раскола древнего материка, расхождения в стороны его половин и погружения отдельных краевых блоков континента, ввиду охлаждения океанской коры, а накапливающиеся толщи осадков своим весом способствуют еще большему погружению (рис. 14.3.5, А).

Рис. 14.3.5. Пассивная континентальная окраина: 1 – суша, 2 – океан, 3 – шельф, 4 – континентальный склон, 5 – континентальное поднятие, 6 – морские осадки, 7 - континентальные осадки, 8 – базальты, 9 – каменная соль, 10 – рифтовый массив, 11 – направление смещения блоков, 12 – листрические сбросы, 13 – континентальная кора

В морфологии таких окраин выделяется шельф, непосредственно примыкающий к суше и представляющий собой очень мелкое, до 200 м, дно океана или моря. Ширина шельфа, как, например, в Северном Ледовитом океане может достигать и более 1000 км. Иногда глубина т.н. высокого шельфа, достигает 300-500 м. Внешняя граница шельфа очерчена четким перегибом рельефа дна или бровкой шельфа. Во время ледниковых эпох большие участки мелководного шельфа были сушей и сейчас на шельфе прослеживаются древние долины рек, террасы, погребенные бары и другие формы рельефа. В районах недавних материковых оледенений на шельфе имеются моренные гряды, а рядом с ними большие песчаные равнины - зандры ( см. гл.12 о ледниках). На Западно-Африканском шельфе во время низкого уровня океана в последнюю ледниковую эпоху реки глубоко врезались в шельф, вырабатывая долины, по которым материал выносился за пределы шельфа, иногда образуя дельтовые конусы.

От бровки шельфа начинается континентальный склон, представляющий собой участок морского дна, обладающий наклоном до 7-8° и даже 10-15°, относительно не

широкий и прослеживающийся до днищ глубоководных котловин, т.е. 3000-5000 м. Выполаживающаяся нижняя часть склона называется подножием континентального склона. Нередко континентальный склон изрезан глубокими, до 1 км, каньонами, выработанными против устьев крупных рек, впадающих в океан. Другие каньоны - это результат донной эрозии мутьевыми потоками, периодически сходящими, наподобие лавин, со склонов и, благодаря, большей плотности, прорезающими осадочные породы континентального склона.

Значительная мощность (до 10-15 км), осадочных отложений на пассивных окраинах, кроме обильного выноса материала с суши, связана еще с явлениями оползания и мутьевыми потоками.

Окраины Тихоокеанского типа (активные) развиты преимущественно по периферии Тихого океана, в восточной части Индийского океана и характеризуются, прежде всего, сильно расчлененным рельефом (рис. 14.3.5,Б).

Рис. 14.3.6. Активная континентальная окраина: 1 – континентальная кора, 2 – океаническая кора, 3 – литосфера, 4 – астеносфера, 5 – аккреционный клин, 6 – островная дуга, 7 – окраинное море, 8 – первичный магматический очаг, 9 – суша континента, 10 – глубоководный желоб

Если провести профиль в широтном направлении в западной части Тихого океана, через Японию, то, начиная с ровного глубоководного ложа океана через небольшой вал мы пересекаем глубоководный желоб, наиболее глубокую структуру всех океанов, глубиной от 7 до 11 км. Самая большая глубина измеренная с корабля “Витязь” в Марианском желобе составляет 11022 м и в желобе Тонга - 10800 м. Желоба обладают асимметричной структурой с более пологим и низким океаническим бортом и крутым и высоким - у островной дуги или континентальной окраины. В желобах иногда наблюдается узкое горизонтальное днище, а внутренний склон осложняется уступами.

Далее в сторону континента активные окраины обладают рельефом двух типов. В одном из них за желобом, имеющим в плане дугообразную форму, выпуклую в сторону океана, располагается островная дуга, усеянная действующими вулканами и обладающая расчлененным гористым рельефом. Хорошо известны такие островные дуги как

Алеутская, Курильская, Японская, Марианская, Антильская, Зондская и другие. За островной дугой располагается т.н. окраинное море, отделяющее островную дугу от континента. Примерами таких морей являются: Берингово, Охотское, Японское, Филиппинское, Коралловое, Южно-Фиджийское и другие, находящиеся на западе Пацифики. Глубина окраинных морей может достигать 3 км и все особенности их строения свидетельствуют о том, что они образовались в условиях тектонического растяжения.

Второй тип представлен активными окраинами без окраинных морей. На востоке Тихого океана, вблизи Центральной и Южной Америки находятся глубоководные желоба и сразу же за ними на окраине континента поднимаются горные хребты с действующими вулканами. Таковы Анды, простирающиеся вдоль западного края Южной Америки. В этих случаях окраинные моря отсутствуют. Помимо вулканизма, активные континентальные окраины характеризуются высокой сейсмичностью, вызванной уходящей наклонно в сторону континента, т.н. сейсмофокальной зоной Беньофа, достигающей глубин в 600-700 км. Наличие такой зоны не случайно и связано, как мы увидим в дальнейшем, с погружением - субдукцией океанической коры под континентальную.

Рельеф дна Мирового океана очень ярко отражает особенности его геологического строения и развития. Ни один из его элементов не является случайным и полностью вписывается в современную геологическую теорию - тектонику литосферных плит.

14.4. Геологическая деятельность волн.

Волны, воздействуя на берега, с одной стороны, разрушают их, а с другой - способствуют аккумуляции материала, формируя широкие и протяженные пляжи.

Если волна подходит к обрывистому берегу и пляжи отсутствуют или они очень узкие, то она всей своей массой обрушивается на берег, разрушая его под воздействием ряда факторов: 1) удара многотонной массы воды, содержащей песок, гальку и даже валуны; 2) сжатия воздуха в порах и полостях породы, который разрывает их, подобно взрывчатому веществу. Сила удара крупных волн достигает десятков тонн на м2, что способно разрушить прочные породы и бетонные сооружения набережных, пристаней, молов. Многократные удары волн в конце концов выбивают нишу в основании крутого берега, называемую волноприбойной. Когда ниша становится слишком глубокой - нависшие над ней части крутого склона обрушиваются, обломки раздробляются волнами и превращаются в гальку и песок. В тоже время начинает формироваться новая волноприбойная ниша и берег отступает (рис. 14.4.1).

рис. 14.4.1. Схема развития и основные элементы абразионного берега: I. Образование волноприбойной ниши: I, II, III – стадии отступания берега; 1 – клиф, 2 – волнопри бойная ниша, 3 – пляж, 4 – бенч, 5 – прислоненная подводная аккумулятивная терраса. II. Спрямление береговой линии

волновой эрозией. А – до спрямления: 1 – суша, 2 – залив, 3 – море. Б – начальная стадия спрямления: 4 – песчаный пляж в заливе, 5 – обрывы. В – конечная стадия спрямления: 6 - песчаный пляж; 7 – береговые обрывы (клифы); 8 – скалы в море

Крутой, почти отвесный берег называется клифом («клиф» - обрыв,нем.). Вместо отступающего обрыва формируется наклонная к морю подводная абразионная терраса или бенч, состоящая из коренных скальных пород, иногда покрытых тонким слоем гальки и песка. Но основная масса разрушенного материала уносится водой глубже подводной абразионной террасы, образуя подводные аккумулятивные террасы. Скорость абразии клифа может колебаться от нескольких см до метров в год, в зависимости от прочности горных пород.

Помимо разрушительного, действия волны приводят к аккумуляции осадков, к образованию пляжей. Набегающая волна несет с собой гальку и песок, которые остаются на берегу при отступании волны. Волна разрушается при глубине прибрежного дна в 1,5 раза больше высоты волны и скорость набегания волны в этот момент резко возрастает

(рис. 14.4.2).

Рис. 14.4.2. Строение пляжа: 1 – верхний пляж; 2 – нижний пляж; 3 – береговой вал; 4 – подводный бар. Летом пляж расширяется, зимой сокращается

Короткие и высокие волны, набегая на отмелый берег, забуруниваются на глубинах в первые метры, откладывая песчаный материал под водой в виде подводного песчаного вала, который, разрушаясь, со временем может примкнуть к пляжу. Подводные валы хорошо маркируются разбивающимися над ними волнами.

Иногда подводный аккумулятивный вал, вырастая, выступает из воды, протягиваясь параллельно берегу иногда на десятки км. Такие валы называются барами. Классическим примером протяженного на 200 км баром, является Арабатская стрелка у Восточного побережья Крыма, отделяющая Азовское море от Сивашского залива.

Бары отшнуровывают от океана пространство воды, называемое лагуной. Знаменитый курорт Майами Бич выстроен на песчаном баре, за которым находится лагуна и собственно побережье Флориды. Около 10% протяженности всех побережий Мирового океана относятся к лагунному типу.

Если волны низкие и длинные, то набегая на берег и, неся с собой песок и гальку, они формируют пляж или, точнее, нижний пляж, у которого хорошо выражен верхний уступ и фас пляжа. В зимнее время, когда часто штормит, а высота волн увеличивается образуется верхний пляж с несколькими уступами или бермами и подводный вал при этом перемещается ближе к берегу, а летом, при более спокойном океане и невысоких волнах, подводный вал отступает мористее. Со стороны моря берма ограничена четким уступом, который называется гребнем бермы. Это линия наивысшего заплеска волн при нормальном волнении в 3-4 балла.

Пляжи бывают не только песчаные, они могу быть образованы галечниками, валунами, раздробленным ракушняком, известковым биогенным материалом, как, например, на пляжах тропической зоны. Пески на пляжах особенно на фасах, как правило, хорошо отсортированы, на бермах - хуже. В отложениях пляжа развита почти горизонтальная слоистость, а в барах и подводных валах косая слоистость.

Поведение песка и гальки на пляже определяется характером набегания волны. Если волны идут перпендикулярно берегу, то песок движется вверх и вниз по одной линии, при этом за зоной прибоя возникают вдольбереговые течения, которые возвращаются в океан в виде узкой полосы - сулоя - быстротекущей - 2 м/с воды, затихающей за прибойной зоной (рис.14.4.3). Там, где сулой встречается с волнами за зоной прибоя, происходит забурунивание волн, поэтому такие участки хорошо видны.

Пловцу, по неопытности попавшему в сулой, не имеет смысла напрягая все силы, плыть против течения. Надо либо пересечь сулой поперек, т.к. он неширок, либо отплыть с ним дальше в море до места, где он затихает и плыть к берегу уже вне потока сулоя.