Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Общая Геология 2

.pdf
Скачиваний:
65
Добавлен:
13.02.2015
Размер:
26.13 Mб
Скачать

Рис. 13.6.5. Полигональные структуры – каменные многоугольники

Процесс неравномерного промерзания в полигональной сети морозобойных трещин, приводит, как уже говорилось, к увеличению давления внутри отдельно взятого полигона, под действием которого, прорвавшийся наверх разжиженный грунт, сдвигает в стороны вымороженные на поверхность камни, которые образуют каменные полигоны (рис. 13.6.10) или каменные многоугольники - площадки с тонким материалом в центре и каменными обломками по краям (рис. 13.6.11).

Рис. 13.6.7. Схема образования грунтовых пятен: 1 – трещина в сезонномерзлом слое; грунт: 2 – сезонномерзлый, 3 – вечномерзлый, 4 – талый ( по Б.Н. Достовалову, В.А.Кудрявцеву)

Рис. 13.6.6. Схема миграции воды и сортировки обломочного материала в рыхлой породе (по А.К.Орвину)

Весь процесс контролируется неоднократным промерзанием и оттаиванием деятельного слоя.

Рис. 13.6.8. Каменные полосы (а), каменные кольца (б), каменные многоугольники (в)

13.7. Термокарст.

Изменение теплового режима в поверхностной части криолитозоны приводит к протаиванию отдельных участков грунта, вытаиванию сегрегационных и жильных льдов и, как следствие, к просадке грунта и возникновение специфических форм термокарстового, отрицательного рельефа. Это небольшие углубления,

Рис. 13.6.9. Основные морфологические типы пятен медальонов: I – плоские или слабо выпуклые, II – выпуклые на пьедесталах кочках, III – плоские или вогнутые. 1 – суглинок или супесь, 2 – гумусированный грунт, 3 – торф

Рис. 13.6.10. Полигональные поля

Рис. 13.6.11. Сортированные каменные многоугольники. Северная Земля ( фото В.Г.Чигира)

воронкообразные просадки, округлые котловины, как правило, занятые озерами или уже осушенные и называемые аласами в Якутии, а в Западной Сибири – хасыреями. Аласы могут быть в десятки км в диаметре и глубиной в 30-40 м, а в их днище формируются озерно-болотные отложения (рис. 13.7.1).

Рис. 13.7.1. Схема последовательных стадий (I - IV) развития аласного рельефа (по П.А.Соловьеву): 1 - суглинок в первичном залегании, 2 – суглинок и отложения ледового комплекса, перемещенные при развитии термокарста, 3 – ледовый комплекс, 4 – отложения, подстилающие ледовый комплекс, 5 – озерные и озерно-болотные аласные отложения, 6 – отложения, выполняющие псевдоморфозы по повторно-жильным льдам, 7 – инъекционные и сегрегационные льды, 8 – поверхность многолетнемерзлой толщи, 9

– первичная поверхность, 10 - озерные воды

Термокарстовый рельеф особенно широко развит на аллювиальных аккумулятивных равнинах в арктическом и субарктическом поясах, где котловины протаивания чаще всего заняты озерами, вода в которых, аккумулируя тепло, сама способствует дальнейшему протаиванию мерзлого грунта, вплоть до образования подозерных несквозных таликов. В южных районах криолитозоны, проявления современного термокарста сходят на нет.

Мерзлые породы чрезвычайно чувствительны к любому, даже самому незначительному техногенному нарушению природного теплового режима. Строительство дорог, нефте- и газопроводов, вырубка леса, даже след от трактора, тут же приводит к изменению теплового равновесия, начинается усиление протаивания и развитие термокарста, бороться с которым очень трудно.

Процессы морозного пучения связаны с образованием льда и увеличением объема породы в деятельном слое, сложенном тонкодисперсными породами и торфяниками. Отдельные многолетние бугры пучения, достигают в высоту 15-20 м, и в диаметре до 100 м, но чаще – меньше.

Сегрегационные бугры пучения могут быть сезонными и многолетними. Они формируются, когда влага устремляется к фронту промерзания, и при этом образуются шлеры льда, что вызывает увеличение объема и поднятие поверхности. Этот процесс может происходить ежегодно. Зимой с возникшего многолетнего бугра пучения снег сдувается, что вызывает увеличение глубины промерзания и «дополнительную» миграцию влаги, приводящую к интенсивному льдообразованию и, соответственно, росту бугра. Такой процесс может продолжаться сотни лет и впоследствии бугор пучения как бы «умирает» переходя в реликтовое состояние.

Многолетние инъекционные бугры пучения или булгунняхи (пинго) возникают в связи с промерзанием таликов, располагающихся часто под озерами и старицами рек, в частности, после осушения термокарстовых озер, аласов и др. Когда термокарстовое озеро осушается, то талые породы под ним начинают промерзать а увеличивающееся давление выжимает талый грунт вверх, приподнимая образовавшуюся над ним мерзлотную корку. Образуется бугор пучения, который в дальнейшем растет, т.к. талый грунт все больше и больше промерзает за счет выделения сегрегационного льда. И, наконец, вместо талика образуется ледяная линза, находящаяся внутри бугра или булгунняха. Размеры булгунняхов достигают в диаметре до 200 м, а в высоту в 30-60 м (рис. 13.7.2).

Гидролакколиты формируются при вторжении напорных надмерзлотных и подмерзлотных вод в талый грунт в местах разгрузки подземных вод и во время

промерзания образуется также ледяная линза, залегающая согласно с вмещающими породами, которые надо льдом приподнимаются образуя бугры.

Разнообразные процессы пучения в поверхностной части криолитозоны распространены чрезвычайно широко и обладают различными формами проявления. Структуры пучения создают большие трудности при строительстве в области распространения многолетнемерзлых пород

Рис. 13.7.2. Разрез булгуняха. Лено-Амгинское междуречье. Центральная Якутия ( по П.А.Соловьеву): 1 – супеси, 2 – суглинки, 3 – пески, 4 – лед, 5 – верхняя граница мерзлых пород, 6 – граница ядра с выделением линзочки чистого льда, 7 – напор водоносного горизонта

Рис. 13.7.3. Разрез бугра пучения в долине р. Хантайки (по Г.С. Константиновой): 1 – шлиры льда мощностью до 20 - 25 см, 2 – торф, 3 – суглинок, 4 – глина, 5 – песок, 6 – верхняя поверхность вечной мерзлоты

Наледи. Зимой, в областях «вечной» мерзлоты многие реки местами промерзают до дна. Вода, которая еще находится в отдельных участках русла и в речном аллювии, ищет выхода и вырывается на лед, растекаясь по нему тонким слоем. Так может повторяться много раз и, в конце концов, образуется толща льда, мощностью в первые метры и площадью в десятки и сотни км2. Наледи речных вод прекращают свой рост к январю, а наледи грунтовых, межмерзлотных и подмерзлотных вод растут до весны и летом не успевают растаять, образуя большие ледяные массивы – тарыны. Самые крупные наледи известны в Момо-Селенняхской впадине, в районе хр.Черского, например, Момский Улахан-Тарын, площадью более 100 км2 и мощностью до 6 м. Если нарушить

естественные пути движения воды, то наледи будут возникать там, где их раньше не было и мешать строительству мостов, дорог и др. Поэтому осуществляют специальные противоналедные меры.

Таким образом, существуют наледи речных, надмерзлотных и подмерзлотных вод. Иногда вода не может подняться на поверхность в силу разных причин, например, если она попадает в пространство между многолетнемерзлыми породами и промерзшими сезонноталыми слоями. Тогда она, замерзая, превращается в ледяную линзу, которая увеличиваясь в объеме, приподнимает кровлю, образуя гидролакколит или подземную наледь. Такие наледи могут быть однолетними или многолетними, особенно там, где происходит непрерывная разгрузка подземных вод. Мощность ледяного ядра в таком случае может достигать 10 м. Но залегает оно, как правило, неглубоко, всего в 2-3 м от поверхности.

13.8. Криогенные формы рельефа, связанные с гравитационными процессами.

Гравитационные процессы на склонах, особенно крутых, в условиях сезонного оттаивания покровных образований приводят к развитию солифлюкции, курумов, оползней.

Солифлюкцией (лат. «солум» – почвы, «флюксус» – течение) называется медленное вязкопластичное течение рыхлых отложений, происходящее летом над кровлей многолетнемерзлых пород. Интенсивность развития солифлюкции прямо связана с крутизной склонов, т.к. с увеличением крутизны склонов течение происходит сильнее

(рис. 13.8.1).

Рис. 13.8.1 Схема перемещения частиц и обломков в деятельном слое на склоне - процесс солифлюкции: 1 – деятельный слой; 2 – многолетнемерзлые породы

Процесс солифлюкции зависит от глубины сезонного оттаивания пород, наклона рельефа, характера задернованности и состава отложений. Чаще всего вязко-пластичному оползанию подвергаются оттаивающие, пылеватые суглинки и супеси, содержание шлиры льда. В случае покровной солифлюкци, течение грунтов осуществляется медленно и равномерно на склонах с крутизной менее 15°. Натечные формы при этом отсутствуют.

Дифференциальная солифлюкция проявляется на склонах в виде террас, оплывин, языков, полос и других форм. Происходит это потому, что скорость смещения грунта в разных местах различна (рис. 13.8.2).

Рис. 13.8.2. Солифлюкционные оплывины: 1 – мелкозем, 2 – обломки пород, «текущие» по склону, 3 – деятельный слой субстрата, 4 – глинистая порода

Быстрая солифлюкция или сплывы происходят на склонах до 25°, когда оттаивают льдонасыщенные почвы и породы. Происходит это обычно в начале лета, в период быстрого оттаивания грунтов. Скорость движения подобных сплывов достигает нескольких метров в минуту.

Курумы, каменные поля, реки или потоки состоят обычно из щебнисто-глыбового материала скальных пород и развиты на склонах до 40°. Процессы курумообразования обусловлены сезонными и суточными колебаниями температуры, которые то расширяют, то сокращают размеры обломков, способствуя этим постепенному перемещению блоков вниз по склону. Каменные обломки постепенно вымораживаются из мелкоземистого материала, течение которого при оттаивании также перемещает вниз обломки, образующие большие поля или потоки. Они хорошо пропускают воду и весной под ними, в охлажденных еще породах, образуется гольцовый лед. В теплые летние месяцы он может вытаивать и переувлажнять тонкие дисперсные породы, которые начинают медленно оползать по склону, увлекая с собой обломки. Курумы перемещаются вниз по склону со скоростью всего лишь нескольких см в год. В принципе курумы тесно связаны с процессами солифлюкции.

13.9. Хозяйственная деятельность в криолитозоне.

Криолитозона занимает более половины территории России и как раз в местах, богатых полезными ископаемыми – нефтью, газом, углем, различными рудами. Освоение этих территорий имеет громадное значение для нашей страны.

Области распространения многолетнемерзлых пород очень чутко реагируют на любые природные или техногенные вмешательства Высокая льдистость

многолетнемерзлых пород и термическое равновесие, готовое сместиться от малейших изменений определяет неустойчивое поведение многолетнемерзлых пород. Любое повышение температуры сразу же повышает глубину сезонного протаивания, лед превращается в воду, которая уходит, грунт уплотняется и проседает. Это явление, называемое термокарстом, сопровождает строительство, сделанное без учета правил, предусмотренных для криолитозоны. А они заключаются, в первую очередь, в сохранении мерзлого состояния грунтов. Отсюда следует, что под каждым строением должно быть проветриваемое подполье, а сваи, на котором оно стоит, необходимо забивать в мерзлые породы ниже слоя сезонного оттаивания (рис. 13.9.1).

Сохраняя многолетнемерзлые породы, не нарушая их теплового равновесия, можно не допустить тепловую осадку грунтов, а затем и строения, которое может спустя какое-то время просто разрушиться. Грунт, чтобы он не начал таять, иногда даже специально замораживают с помощью охлаждающей системы.

Рис. 13.9.1. Строительство в криолитозоне. Дома стоят на бетонных сваях, забитых в многолетнемерзлые породы, ниже деятельного слоя: 1 - отверстия для циркуляции воздуха, 2 – деятельный слой, 3 – многолетнемерзлые породы

Свайные фундаменты - это сейчас основной способ строительства в криолитозоне, хотя строят также и на подсыпных грунтах. В криолитозоне расположены такие города, так Якутск, Норильск, Билибинская АЭС, Анадырь и другие города. В свое время впервые свайное основание было опробовано при строительстве Якутской центральной тепловой электростанции, объекта, который выделяет большое количество тепла. У нее проветриваемое подполье достигает почти 2-х метров. Это сооружение построено в 1937 г. и с тех пор работает не деформируясь.

Особую сложность составляет прокладывание в криолитозоне инженерных коммуникаций – теплопроводов, канализации, обычного водопровода. Надо иметь в виду. Что и многолетнемерзлые породы, на которых ведется строительство, обладают разными свойствами, которые необходимо учитывать. Наука о мерзлых грунтах чрезвычайно сложна, интересна и необходима. Даже стандартный столб высотой 6 м нельзя вкопать в оттаявший слой без того, что его через некоторое время выпучит из этого слоя, также как выпучивает из него камни. А поднимается он потому, что будучи вкопанным в деятельный слой, при начале замерзания слоя с поверхности он, при увеличении объема

водонасыщенного слоя, будет немного выдернут вверх примерзшим к нему грунтом. Естественно, что под столбом образуется полость, тут же заполняемая разжиженным грунтом, который впоследствии также замерзнет, увеличив свой объем. И так повторяется из года в год по несколько см и, наконец, столб рухнет, будучи полностью выпученным из грунта (рис. 13.9.2).

Рис. 13.9.2. Схема, показывающая последовательные стадии (I - IV) выпучивания столба из слоя летнего оттаивания грунтов, сложенного влажными рыхлыми горными породами: 1 - оттаявшая часть сезонноталого слоя; 2 – толща вечной мерзлоты; 3 – промерзшая часть слоя летнего оттаивания; 4 – полость под подтаявшим столбом, заполненная разжиженным грунтом; 5 – то же, заполненная замерзшим льдистым грунтом; 6 – то же, заполненная уплотнившимся грунтом

Вообще, пучение грунта в области развития многолетнемерзлых пород – это бедствие, наносящее огромный урон всему хозяйству севера. Деформированные насыпи железных и автомобильных дорог, газо- и нефтепроводы, аэродромы, кабельные линии связи, водо- и теплопроводы и многие другие сооружения испытывают на себе неравномерное пучение грунта.

Огромные проблемы возникают с проходкой горных выработок и шахт, в угленосных районах, в Воркуте, например, где все подземные сооружения – это источники тепла, а температура многолетнемерзлых пород около 0°С.

Происходящее изменение климата и природной среды под влиянием техногенной деятельности человека и впоследствии естественных причин, может доставить будущим поколениям немало хлопот в районах распространения многолетнемерзлых пород.

Глава 14.0. ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ОКЕНАОВ И МОРЕЙ

Водная оболочка Земли покрывает почти 71% ее поверхности (362 млн.км2 ), что в 2,5 раза больше площади суши (149 млн. км2 или 29%), так что нашу планету можно назвать океанической. Объем вод океанов и морей оценивается в гигантскую цифру 1,4 млрд.км3 , тогда как вся гидросфера составляет 1,8 млрд.км3. Распределение акваторий океанов таково, что в северном полушарии, считающимся материковым, суша занимает 39,3%, а океаны - 60,7%. В южном, океаническом полушарии, соответственно 19,1% и 80,9%.

Геологическая деятельность океанов и морей осуществляется разными процессами: 1) абразией (“абрадо” - соскабливать, лат.), разрушением береговых линий волнами, приливами, течениями; 2) переносом разнообразного материала, выносимого реками, образующимися за счет вулканизма, эоловой (ветровой) деятельности, разносимого льдом, а также растворенного вещества; 3) аккумуляция или отложения осадков: биогенных, гидрогенных (эвапоритов, железо-марганцевых конкреций), обломочных и космогенных (сферул); 4) преобразование осадков в породы или диагенез и переотложения осадков. Прежде чем рассматривать геологические процессы в океанах и морях, необходимо сказать о свойствах самой водной массы и ее перемещении под действием различных сил.

14.1. Свойства океанской воды.

Огромная масса воды в океанах на разных широтах и разных глубинах отличается по своим свойствам, что придает водной массе расслоенность или стратифицированность.

Температура. Вода в океанах прогревается только в поверхностном слое, поэтому лишь 8% океанских вод теплее +10°С, а больше 50% имеет температуру ниже +2,3°С. Таким образом, океаны в целом холодные (рис. 14.1.1).

Температура в океанах с глубиной быстро понижается, особенно в поверхностной зоне, мощностью до 200 м и более теплый слой воды как бы плавает над более холодной толщей,, которая отделяется от вышележащего слоя зоной резкого, скачкообразного изменения температуры и плотности, называемой, термоклином (рис.14.1.2). Верхний теплый слой, подверженный воздействию ветровых волн называют перемешанным слоем, являющимся основным местом процессов фотосинтеза водорослей. На расстоянии по вертикали в 100 м Т уменьшается на 10-12°С. Различают постоянный и сезонный термоклины.

Вповерхностном слое температура изменяется от +30 ° С в низких широтах до 0° С

ввысоких широтах. Среднегодовая температура воды около +17°С, но она выше в