Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биология.docx
Скачиваний:
181
Добавлен:
13.02.2015
Размер:
1.7 Mб
Скачать

6. Биохимия, биофизика, молекулярная биология

Структура, свойства и биологическая роль белков.

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Строение аминокислот. Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь. Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул. Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Свойства белков. Аминокислотный состав, структура белковой молекулы определяют его свойства. Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н+ определяют буферные свойства белков; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание) могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией. Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой, в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией. Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой.

Функции белков

Функция

Примеры и пояснения

Строительная

Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.

Транспортная

Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.

Регуляторная

Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.

Защитная

В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

Двигательная

Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.

Сигнальная

В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.

Запасающая

В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.

Энергетическая

При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.

Каталитическая

Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО2 при фотосинтезе.

Строение, механизм действия и регуляция активности ферментов.

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия.

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами, если тормозят — ингибиторами.

Классификация ферментов. По типу катализируемых химических превращений ферменты разделены на 6 классов:

  • оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),

  • трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),

  • гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),

  • лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С–С, С–N, С–О, С–S — декарбоксилаза),

  • изомеразы (внутримолекулярная перестройка — изомераза),

  • лигазы (соединение двух молекул в результате образования связей С–С, С–N, С–О, С–S — синтетаза).

Принципы регуляции метаболизма.

Регуляция скорости протекания реакций определенного метаболического пути часто осуществляется путем изменения скорости одной или, возможно, двух ключевых реакций, катализируемых " регуляторными ферментами ". Некоторые физико-химические факторы, контролирующие скорость ферментативной реакции, например концентрация субстрат а, имеют первостепенное значение при регуляций общей скорости образования продукта данного пути метаболизма. В то же время другие факторы, влияющие на активность ферментов, например температура и pH, у теплокровных животных постоянны и практически не имеют значения для регуляции скорости процессов метаболизма. (Обратите, однако, внимание на изменение значения pH по ходу желудочно-кишечного тракта и его влияние на пищеварение.

Равновесные и неравновесные реакции. При достижении равновесия прямая и обратная реакции протекают с одинаковой скоростью, и, следовательно, концентрации продукта и субстрата остаются постоянными. Многие метаболические реакции протекают именно в таких условиях, т.е. являются "равновесными".

A + B = C + D В стационарных условиях in vivo протекание реакции слева направо возможно за счет непрерывного поступления субстрата и постоянного удаления продукта D. Такой путь мог бы функционировать, но при этом оставалось бы мало возможностей для регуляции его скорости путем изменения активности фермента, поскольку увеличение активности приводило бы только к более быстрому достижению равновесия.

В действительности в метаболическом пути, как правило, имеются одна или несколько реакций "неравновесного" типа, концентрации реактантов которых далеки от равновесных. При протекании реакции в равновесном состоянии происходит рассеивание свободной энергии в виде теплоты, и реакция оказывается практически необратимой.

По такому пути поток реактантов идет в определенном направлении, однако без системы контроля наступит его истощение. Концентрации ферментов, катализирующих неравновесные реакции, обычно невелики, и активность ферментов регулируется специальными механизмами; эти механизмы функционируют по принципу "одноходового" клапана и позволяют контролировать скорость образования продукта.

Лимитирующая реакция метаболического пути. Определяющая скорость реакция (лимитирующая) - это первая реакция метаболического пути, фермент которой насыщается субстратом. Она может быть определена как "неравновесная" реакция, характеризующаяся величиной Km, значительно меньшей, чем нормальная концентрация субстрата. Первая реакция гликолиз а, катализируемая гексокиназой , является примером такой определяющей скорость реакции.

Гормональная регуляция обмена веществ.

Обмен веществ (метаболизм) - совокупность всех видов превращений веществ и энергии в организме, обеспечивающих его развитие, жизнедеятельность и самовоспроиз-ведение, а также его связь с окружающей средой и адаптацию к изменениям внешних ус-ловий.

Основу обмена веществ составляют взаимосвязанные процессы: анаболизм и катаболизм (синтез и разрушение веществ), направленные на непрерывное обновление живого материала и обеспечение его необходимой для жизнедеятельности энергией. Осуществляются они путем последовательных химических реакций с участием веществ, ускоряющих эти процессы - ферментов.

В организме человека происходит гормональная регуляция обмена веществ, координируемая центральной нервной системой. Любое заболевание сопровождается нарушениями обмена веществ; генетически обусловленные служат причиной многих наследственных болезней.

Гормоны - органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации. У высших животных есть две регуляторных системы, с помощью которых организм приспосабливается к постоянным внутренним и внешним изменениям. Одна из них – нервная система, быстро передающая сигналы (в виде импульсов) через сеть нервов и нервных клеток; другая – эндокринная, осуществляющая химическую регуляцию с помощью гор-монов, которые переносятся кровью и оказывают эффект на отдаленные от места их выделения ткани и органы. Гормоны есть у всех млекопитающих, включая человека; они обнаружены и у других живых организмов. Физиологическое действие гормонов направлено на:

обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов;

поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела;

регуляцию процессов роста, созревания и репродукции.

Гипофиз является главной железой внутренней секреции, от деятельности которой зависит деятельность других желез. Гипофиз расположен в черепной коробке под головным мозгом, поэтому еще называется нижним мозговым придатком. И по расположению, и по строению, и по происхождению гипофиз тесто связан с нервной системой, которая оказывает не него влияния, усиливая или тормозя выработку его гормонов.

Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, то-нальность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы.

Гормоны – продукты секреции эндокринных желез, выделяющиеся прямо в кровоток и обладающие высокой физиологической активностью. Главные эндокринные железы млекопитающих – гипофиз, щитовидная и паращитовидные железы, кора надпочечников, мозговое вещество надпочечников, островковая ткань поджелудочной железы, половые железы (семенники и яичники), плацента и гормон - продуцирующие участки желудочно-кишечного тракта.

Роль гормонов надпочечников, поджелудочной и щитовидной железы в регуляции обмена углеводов. Клетки коры надпочечников секретируют (выделяют) половые стероиды – гормоны, по химическому строению и биологическому действию аналогичные гормонам половых желез. Кроме половых, клетки коры производят еще две очень важные группы гормонов: минера-локортикоиды (альдостерон и дезоксикортикостерон) и глюкокортикоиды (кортизол, кортикостерон и др.).

Нервная система реагирует на многие внешние воздействия (в том числе стрессовые), посылая нервные импульсы в особый отдел мозга – гипоталамус. В ответ на эти сигналы гипоталамус секретирует кортиколиберин, который переносится кровью по т.н. воротной системе прямо в гипофиз (расположенный в основании мозга) и стимулирует секрецию им кортикотропина (адренокортикотропного гормона, АКТГ). Количество гормонов, вырабатываемых щитовидной железой, в норме регулируется системой обратной связи, звеньями которой являются тиреотропный гормон (ТТГ) гипофиза и сами тиреоидные гормоны. При повышении уровня ТТГ щитовидная железа производит и выделяет больше гормонов, а повышение их уровня подавляет продукцию и секрецию гипофизарного ТТГ.

Особенности гормональной регуляции обмена углеводов при мышечной деятельности. Тесная взаимосвязь обменов, а именно углеводного, липидного и белкового на уровне всего организма обеспечивается четкой регуляцией со стороны эндокринной системы. Поэтому многие гормоны стоят на пересечении этих трех обменов.

Инсулин – снижает уровень сахара в крови.

Углеводный обмен:

  • активирует транспорт глюкозы через клеточную мембрану;

  • ускоряет окислительный распад глюкозы (активирует ферменты ЦТК);

  • ускоряет гликогеногенез в печени и мышцах;

  • тормозит гликогенолиз и глюконеогенез.

Липидный обмен:

  • ускоряет липогенез из продуктов распада сахаров;

  • замедляет липолиз.

Белковый обмен:

  • ускоряет протеиногенез из продуктов распада сахаров.

Панкреатический глюкагон – увеличивает содержание сахара в крови.

Адреналин – повышает уровень сахара в крови.

Активирует гликогенолиз.

На любой процесс жизнедеятельности организма расходуется энергия. Эта энергия образуется в результате распада различных химических веществ - углеводов, жиров (реже - белков), поступающих в организм вместе с пищей.

Углеводы поступают в организм с растительной и в меньшем количестве с животной пищей. Кроме того, они синтезируются в нем из продуктов расщепления аминокислот и жиров. Углеводы - важная составная часть живого организма, хотя количество их в орга-низме значительно меньше, чем белков и жиров, - всего около 2% сухого вещества тела.

Если энергия, запасенная в химических связях поступающих с пищей веществ, больше, чем энергетический расход организма на процессы жизнедеятельности, часть энергии откладывается в запас. В организме млекопитающих запасным источником энергии является жировая ткань. Когда количество углеводов достигает определенного минимума, организм начинает расщеплять жиры. Таким образом, если человек ест меньше, чем расходует энергии, он худеет.

В некоторых случаях, когда с пищей поступает чрезвычайно мало энергии либо не поступает ее вовсе (голодание), а энергетические запросы организма велики (более или менее интенсивная мышечная деятельность), организм не тратит силы на сложный процесс расщепление жиров. В этих случаях организму легче расщепить некоторые виды низкомолекулярных белков. К таким белкам относятся, прежде всего, иммунные белки.

Гормон поджелудочной железы глюкагон так же стимулирует эти процессы. Гормон поджелудочной железы инсулин является антагонистом адреналина и глюкагона. Он не-посредственно влияет на углеводный обмен печеночных клеток, активизирует синтез гликогена и тем самым способствует его депонированию. В регуляции углеводного обмена участвуют гормоны надпочечников, щитовидной железы и гипофиза.

Основной обмен - это энергетические траты организма, связанные с поддержанием минимального уровня жизнедеятельности в стандартных условиях во время бодрствования.

Уровень основного обмена регулируется нервной системой и системой желез внутренней секреции.

Энергетика клеток растений и животных.

Основным источником энергии для всех живых существ, населяющих нашу планету, служит энергия солнечного света, которую используют непосредственно только клетки зеленых растений, водорослей, зеленых и пурпурных бактерий. В этих клетках из углекислого газа и воды в процессе фотосинтеза образуются органические вещества (углеводы, жиры, белки, нуклеиновые кислоты и др.). Поедая растения, животные получают органические вещества в готовом виде. Энергия, запасенная в этих веществах, переходит вместе с ними в клетки гетеротрофных организмов.

В клетках животных организмов энергия органических соединений при их окислении превращается в энергию АТФ. (Углекислый газ и вода, выделяющиеся при этом, вновь используются автотрофными организмами для процессов фотосинтеза.) За счет энергии АТФ осуществляются все процессы жизнедеятельности: биосинтез органических соединений, движение, рост, деление клеток и др.

Почему при окислении органических веществ освобождается энергия? Электроны, входящие в состав молекул органических соединений, обладают большим запасом энергии, они как бы подняты в них на высокий энергетический уровень. Когда электроны перемещаются с высокого уровня на более низкий (в своей или другой молекуле или атоме) энергия освобождается. Конечным преемником электронов служит кислород, поэтому он необходим для процессов окисления. В этом заключается его главная биологическая роль. Биологическое окисление органических веществ осуществляется в митохондриях и в корне отличается от горения. В процессе горения органических веществ почти вся энергия выделяется в виде теплоты. Процессы биологического окисления протекают ступенчато, при участии ферментов. При этом около 50% энергии органических веществ превращается в энергию АТФ, оставшаяся энергия окисления выделяется постепенно, не повреждая чувствительных к температуре белков.

Ферментативное расщепление глюкозы (гликолиз). Глюкоза — один из основных источников энергии для всех клеток. Из глюкозы построены молекулы полисахаридов крахмала (в клетках растений) и гликогена (в клетках животных).

При недостаточном поступлении органических веществ в клетки крахмал и гликоген расщепляются ферментами до глюкозы, которая окисляется далее и служит источником энергии.

В процессе окисления глюкозы в клетках участвует множество ферментов. Ферментативное расщепление и окисление глюкозы называют гликолизом. Ферменты, окисляющие глюкозу, образуют «ферментативный конвейер», на который поступают и постепенно расщепляются молекулы глюкозы. Условно процесс гликолиза можно разбить на три этапа.

Первый этап проходит в цитоплазме, на внешних мембранах митохондрий. На этом этапе одна шестиуглеродная молекула глюкозы распадается на две трехуглеродные молекулы пировиноградной кислоты (ПВК), и в итоге образуются две молекулы АТФ.

Второй этап окисления происходит на кристах митохондрий. В результате последовательных ферментативных реакций молекулы ПВК окисляются до CO2 образуются новые молекулы, богатые энергией, а водород переходит в особые молекулы — акцепторы водорода и электронов и носители энергии (это пиридиннуклеотиды НАД, НАДФ и др.).

Третий этап также протекает на внутренних мембранах митохондрий. Структуры, обеспечивающие прохождение третьего этапа, называют цепью переноса электронов. Электроны от молекул — носителей энергии с помощью ферментов перемещаются по звеньям цепи с более высокого энергетического уровня на менее высокий. Освобождающаяся при этом энергия аккумулируется в 36 молекулах АТФ. Электроны в конце концов соединяются с кислородом. В цепи переноса электронов кислород — их конечный преемник. Кислород при этом соединяется с водородом и образуется вода. Обеспечивая разность потенциалов в цепи переноса электронов, он как бы притягивает электроны с высоких энергетических уровней молекул — носителей энергии на свой низкоэнергетический уровень.

Ферментативный распад белков, жиров и углеводов в пищеварительной системе.

Пищеварение в желудке. Пища накапливается в желудке, перемешивается и пропитывается кислым желудочным соком, обладающим ферментативной активностью, выраженными антибактериальными свойствами и способностью денатурировать клеточные структуры. Основная функция желудка: депонирование пищи, её механическая и химическая обработка, включающая начальные стадии П. (главным образом белков под действием протеолитических ферментов), а также постепенная эвакуация пищевой массы в кишечник. В желудке пища находится в зависимости от её количества и состава от 4 до 10 к (у человека в среднем 3,5—4 ч). У многих животных желудок имеет несколько отделов, выполняющих различные функции. Например, у жвачных в желудке происходят основные преобразования пищевой массы под влиянием деятельности бактерий и простейших. Слизистая оболочка желудка секретирует неактивный пепсиноген, активируемый в присутствии соляной кислоты и трансформируемый в активный пепсин, осуществляющий начальные стадии гидролиза белков, а также парапепсины, гастриксин, желатиназу (в естественных условиях расщепляющую, по-видимому, коллаген соединительные ткани) и катепсины, принимающие участие в желудочном П. на ранних этапах онтогенетического развития. В желудочном соке некоторых жвачных в период молочного питания обнаруживается реннин, или химозин, вызывающий створаживание и последующее расщепление казеина и действующий, в отличие от пепсина, в слабокислой или нейтральной среде. В желудочном соке присутствует небольшое количество липазы, роль которой, однако, невелика. Амилаза слюны до её денатурации соляной кислотой продолжает начавшееся в полости рта расщепление углеводов. В полости желудка действуют также ферменты поджелудочного сока, забрасываемого антиперистальтическими движениями, главным образом при приёме жирной пищи.

Пищеварение в кишечнике. Из желудка пищевая масса порциями поступает в кишечник, где наиболее интенсивно (особенно в начальной части тонкой кишки) происходят процессы ферментативного гидролиза и переход к всасыванию. Фаза П. в тонком кишечнике реализуется в среде, близкой к нейтральной. Переход от первоначального переваривания в кислой среде (желудок) к перевариванию в нейтральной или слабощелочной (тонкая кишка) типичен как для человека и высших животных, так и для низших многоклеточных и одноклеточных организмов, у которых в пищеварительных вакуолях поддерживается сначала кислая, а затем щелочная реакция. Большинство надмолекулярных агрегаций и крупных молекул (белки и продукты их неполного гидролиза, углеводы и жиры) у человека и высших животных расщепляются в полости тонкой кишки преимущественно под действием ферментов, секретируемых поджелудочной железой и поступающих в двенадцатиперстную кишку. Пептиды, образовавшиеся под действием пепсина желудка, и нерасщеплённые белки гидролизуются протеазами поджелудочного сока: трипсином, химотрипсином, карбоксипептидазами и эластазой. В результате последовательного действия этих ферментов в полости тонкой кишки из крупных белковых молекул и полипептидов образуются низкомолекулярные пептиды и незначительное количество аминокислот. Углеводы (крахмал и гликоген) гидролизуются под влиянием a-амилазы поджелудочного сока, расщепляющей их до три- и дисахаридов без значительного накопления глюкозы. В гидролизе жиров существенную роль играет жёлчь, выделяемая печенью. Жёлчь активирует липазу поджелудочного сока и эмульгирует жиры, что приводит к увеличению поверхности соприкосновения их с липазой, растворённой в водной фазе. В полости тонкой кишки этот фермент поэтапно отщепляет жирные кислоты и приводит к образованию ди- и моноглицеридов и незначительного количества свободных жирных кислот и глицерина. Образующиеся продукты гидролиза в результате перемешивающих движений кишечной мускулатуры (см. Маятникообразные движения) соприкасаются с поверхностью кишки, где происходит дальнейшая их обработка путём мембранного П. (рис. 3). В связи с выраженной поверхностной активностью продукты гидролиза поступают в зону щёточной каймы (если размеры их молекул не слишком велики), чему способствует их перенос в потоках растворителя, возникающих в результате всасывания воды кишечными клетками.

Промежуточные и заключительные стадии П. реализуются ферментами, локализованными на поверхности мембран кишечных клеток, где начинается всасывание. В мембранном П. участвуют: 1) ферменты поджелудочного сока (a-амилаза, липаза, трипсин, химотрипсин, эластаза и др.), адсорбированные в различных слоях так называемого гликокаликса, покрывающего микроворсинки и представляющего собой мукополисахаридную трёхмерную сеть; 2) собственно кишечные ферменты (g-амилаза, олиго- и дисахаридазы, различные тетра-, три- и дипептидазы, аминопептидаза, щелочная фосфатаза и её изоэнзимы, моноглицеридлипаза и др.), синтезированные клетками кишечного эпителия и переносимые на поверхность их мембран, где они осуществляют пищеварительные функции. Адсорбированные ферменты осуществляют преимущественно промежуточные, а собственно кишечные — заключительные стадии гидролиза пищевых веществ. Олигопептиды, поступающие в область щёточной каймы, расщепляются до аминокислот, способных к всасыванию, за исключением глицилглицина и некоторых дипептидов, содержащих пролин и оксипролин, которые всасываются как таковые. Дисахариды, поступающие с пищей и образующиеся в результате переваривания крахмала и гликогена, гидролизуются собственно кишечными гликозидазами до моносахаридов, которые транспортируются через кишечный барьер во внутреннюю среду организма. Триглицериды расщепляются не только под действием липазы поджелудочного сока, но и под влиянием собственно кишечного фермента — моноглицеридлипазы. Всасывание происходит в виде жирных кислот и b-моноглицеридов. Длинноцепочные жирные кислоты в слизистой оболочке тонкой кишки вновь эстерифицируются и поступают в лимфу в виде хиломикронов (частиц диаметром около 0,5 мкм). Короткоцепочные жирные кислоты не ресинтезируются и поступают в большей степени в кровь, чем в лимфу. В целом при мембранном П. расщепляется большая часть всех гликозидных и пептидных связей и триглицеридов. Мембранное П., в отличие от полостного, происходит в стерильной зоне, т.к. микроворсинки щёточной каймы представляют собой своеобразный бактериальный фильтр, отделяющий заключительные стадии гидролиза пищевых веществ от заселённой бактериями полости кишки. В норме в процессах П. важное значение имеют микроорганизмы, а у некоторых животных — простейшие, населяющие различные отделы желудочно-кишечного тракта. Пищеварительные процессы в тонкой кишке распределены неодинаково как в направлении от её начала к концу, так и в направлении от крипт к верхушкам ворсинок, что выражается в соответственной топографии каждого из пищеварительных ферментов, осуществляющих как полостное, так и мембранное П.

П. в толстых кишках практически отсутствует. В их содержимом обнаруживаются незначительные количества ферментов и богатая флора бактерий, вызывающих сбраживание углеводов и гниение белков, в результате чего образуются органические кислоты, газы (углекислый газ, метан и сероводород), ядовитые вещества (фенол, скатол, индол, крезол), обезвреживающиеся в печени. Вследствие микробного брожения расщепляется клетчатка. В толстых кишках преобладают процессы обратного всасывания (реабсорбции) воды, минеральных и органических компонентов пищевой кашицы — химуса. В толстых кишках всасываются до 95% воды, а также электролиты, глюкоза, некоторые витамины и аминокислоты, продуцируемые микробами кишечной флоры. По мере продвижения и уплотнения содержимого кишечника формируется кал, накопление которого вызывает акт дефекации.

Анаэробные и аэробные пути синтеза АТФ в клетке.

Аэробный гликолиз идет при участии кислорода и проходит все выше названные этапы. За счет выделяемой при этом энергии из одной молекулы глюкозы образуется 38 молекул АТФ, коэффициент полезного действия энергетических систем клетки превышает 50%.

При анаэробном (бескислородном) гликолизе молекула глюкозы также расщепляется на две молекулы ПВК, однако они в дальнейшем окисляются лишь частично. За счет выделяемой при этом энергии образуются только две молекулы АТФ. КПД анаэробного гликолиза только 5%. Анаэробный гликолиз позволяет клетке и организму выжить в условиях острого дефицита кислорода.

У ряда микроорганизмов, обитающих в бескислородной среде (анаэробов), ПВК превращается в молочную кислоту или этиловый спирт и углекислый газ. Молочная кислота образуется у микроорганизмов, вызывающих молочнокислое брожение, которое наблюдается при скисании молока, квашении капусты. Этиловый спирт и СО2 образуются при спиртовом брожении, вызываемом, например, пивными дрожжами.

Не только углеводы, но и жиры, и белки расщепляются до мономеров, способных окисляться с помощью ферментативных систем. Энергия, поступающая с пищей, в конечном итоге превращается в клетках в энергетический потенциал молекул АТФ.

Пути биосинтеза макромолекул.

Общие закономерности биосинтеза аминокислот.

Получение аминокислот является одним из наиболее масштабных биотехнологических производств. Мировой уровень выпуска аминокислот достигает нескольких млн. тонн в год. Аминокислоты получают в настоящее время четырьмя способами.

1. Химический или ферментативный гидролиз белков животного или растительного сырья. Способ экономически не выгоден; технологически сложно выделить чистые препараты аминокислот.

2. Химический синтез аминокислот из предшественников. Способ эффективен, однако полученные продукты представляют смесь рацетатов.

3. Микробный синтез аминокислот. Преимуществом способа является способность микроорганизмов синтезировать биологически активные L-изомеры аминокислот.

4. Химико-микробиологический метод – химический синтез вещества-предшественника с последующей биотрансформацией ферментными системами соответствующих штаммов микроорганизмов. Метод перспективен для получения аминокислот, биосинтез которых из традиционных углеродных субстратов затруднен или невозможен.

Биосинтез белка и его регуляция.

Осуществляется во всех клетках про - и эукариотических организмов, это неотъем-лемое св-во живого. Информация о первичной структуре белковой молекулы, от которой зависят все остальные структуры и св-ва, за-кодирована последовательностью нуклеотидов в соответствующем участке молекулы ДНК – гене. Информация о структуре молекуле белка находится в ядре, а его сборка идёт в цитоплазме (в рибосомах), в клетке имеется посредник, копирующий и передающий эту информацию. Таким посредником является и-РНК.

Этапы биосинтеза белка. Весь белковый синтез, или процесс трансляции, может быть условно разделён на два этапа: активирование аминокислот и собственный процесс трансляции.

Активирование аминокислот. Необходимым условием синтеза белка, который, в конечном счете, сводится к поли-меризации аминокислот, является нали¬чие в системе не свободных, а так называемых ак-тивированных аминокислот, располагающих своим внутренним запасом энергии. Активация свободных аминокислот осуществляется при помощи специфических ферментов аминоацил-тРНК-синтетаз в присутствии АТФ. Этот процесс протекает в две стадии. Обе стадии катализируются одним и тем же ферментом. В первой стадии аминокислота реагирует с АТФ, и образуется промежуточный продукт, который реагирует с соответствующей 3'-ОН-т-РНК, в результате чего образуется аминоацил-тРНК и ос¬вобождаются пиро-фосфат и АМФ. Аминоацил-тРНК располага¬ет необходимым запасом энергии. Аминокислота присоединяется к концевому З'-ОН-гидроксилу адениловой кислоты, которая вместе с двумя остатками цитидиловой кисло-ты образует конце¬вой триплет (ЦЦА), являю-щийся одинаковым для всех транс¬портных РНК 1.

Вторую стадию матричного синтеза белка - трансляцию, протекающую в рибосоме, условно делят на три стадии: ини¬циацию, элонгацию и терминацию.

Инициация трансляции. Стадия инициации, являющаяся «точ-кой отсчета» синтеза белка, требует соблюде-ния ряда условий, в частности наличия в сис-теме, помимо 70S или 80S рибосом, инициаторной амино-ацил-тРНК, инициирующих кодонов в составе м-РНК и белковых фак-торов инициации. Таким образом, N-формил-метионил-тРНК является первой аа-тРНК, которая определяет включение N-концевого остатка аминокислоты и тем самым начало трансляции. Необходимым условием инициации является также наличие инициирующих кодонов, кодирующих формил-метионин. У бактерий эту функцию выполняют триплеты АУГ и ГУГ м-РНК. Однако эти триплеты кодируют формил-метионин (или началь¬ный метионин), только будучи начальными триплетами, при считы-вании матричной м-РНК.

Образование инициаторного комплекса. Имеется много экспериментальных доказательств, что в про¬цессе белкового синтеза наблюдаются постоянная диссоциация 70S рибосомы на 30S и 50S субчастицы и последующая их реассоциация. Сначала образуется инициаторный комплекс путем присоединения белковых факторов, формил-метионил-тРНК и ГТФ к 30S субчастице рибосомы, к которой комплементарно ан-тикодону формил-метионил-тРНК присоединяется м-РНК (с кодоном АУГ).

Особую роль играет формил-метионил-тРНК, ко¬торая помогает м-РНК найти на 30S субчастице определенное положение, обеспечивающее трансляцию информации о после¬довательности аминокислот в полипептидной цепи. Как только м-РНК присоединяется к комплексу, высвобождается белковый фактор IF3; оставшийся комплекс легко присоединяет 50S рибосому, образуя транслирующую, т. е. функционально-активную 70S рибосому. В процессе этих перестроек рибосомы освобож¬дают остальные белковые факторы инициации и продукты гид-ролиза ГТФ (ГДФ в неорганический фосфат), энергия которого расходуется, на конформационные изменения 70S рибосомы, в результате которых формил-метионил-т-РНК из аминоацильного центра перемещается в пептидильный центр рибо¬сомы. У образовавшейся активной рибосомы 70S оказывается свободный аминоацильный центр, который мо¬жет реагировать с определенной аа-тРНК в строгом соответ¬ствии с очередным кодоном м-РНК. С этого момента начинается второй этап синтеза - элонгация.

Элонгация трансляции. Процесс элонгации полипептидной цепи у Е. соli непосред¬ственно, точнее топографиче-ски, связан с большей субчастицей (50S) рибо-сомы, содержащей два центра для связывания т-РНК: один из них называется амоноациль-ным, другой - пептидильным центром.

В процессе элонгации у Е. соli также участвуют три белковых фактора, обозначае-мых EF-Tu, EF-Ts и EF-G (т. е. элонгационные факторы трансляции U, S и G), а у эукариот извест¬но два таких фактора, названных трансляционными факторами: TF-1 и TF-2. Процесс элонгации требует также наличия ГТФ, энергия гид¬ролиза которого необходима для сближения аа-тРНК, располо¬женной на аминоацильном центре, и формил-метионил-тРНК, локализованной на пептидильном центре. Элонгация начинается со связывания аа-тРНК (аминокислотный остаток которого яв¬ляется вторым с N-конца после формил-метионина) с белковы¬ми факторами и присоединения всего комплекса к аминоациль-ному центру в соответствии с кодовым трипле-том на м-РНК. Да¬лее в пептидильном центре осуществляется ферментативная ре¬акция транспептидирования между формил-метионил-тРНК и аа-тРНК; в процессе этой реакции остаток формил-метионина переносится на свободную NH2-группу аа-тРНК, и замыкается первая пептидная связь в будущей полипептидной цепи; парал¬лельно освобождается т-РНКфмет. Фермент, катализирующий эту реакцию, получил назва-ние пептидил-трансферазы. Достигается транс-локация благодаря миграции рибосомы относительно м-РНК при участии фермента «транслоказы», фактора элонгации, а также энергии распада ГТФ.

Таким образом, в стадии элонгации происходит последова¬тельное наращивание полипептидной цепи по одной аминокисло¬те в строгом соответствии с порядком триплетов (кодонов) в молекуле м-РНК.

Терминация процесса трансляции. Завершение синтеза полипептидной цепи в 70S рибосоме осу¬ществляется при уча-стии трех белковых факторов реализации: RF-1, RF-2 и RF-3 у Е. соli. В клетках животных открыт единственный белок с аналогичным свойством - фактор R. После того как терминирующий кодон м-РНК займет свое место в аминоацильном центре рибосомы, к нему присоединяется один из белковых факторов терминации и блокируется дальней-шая элонгация цепи.

Терминирующие кодоны и белковые факторы индуцируют пептидилэстеразную активность одного или двух рибосомных белков 50S субчастицы, причем разрывается сложноэфирная связь между синтезированным полипептидом и т-РНК. Следствием этого являются отделение бел¬ковой молекулы от рибосомы, освобождение т-РНК и м-РНК (по-следняя подвергается распаду до свободных рибонуклеотидов); одновременно 70S рибо-сома распадается на две свои субчасти¬цы 30S и 50S, которые поступают в свободный пул и могут вновь использоваться для реассоциации рибосомы. Синтезированная полипептидная цепь далее подвергается деформилированию при участии специфического фермента - пептидил-деформилазы. Возможно, что от полипептида отщепляет¬ся также концевой метионин. В клетках животных открыт фер-мент аминопептидаза, катализирующая отщеп-ление N-концевого метионина.

Регуляция биосинтеза белка. Кол-во и разнообразие белков, в частности, ферментов, определяются долей их участия в метаболизме. Т.о. биосинтез белка регулируется внешними и внутренними условиями, которые диктуют клетке синтез кол-ва и кач-ва белка, необходимый для выполнения физиологических функций. Общую теорию регуляции синтеза белка разработали Жакоб и Мано. Синтез м-РНК на структурных генах молекулы ДНК непосредственно контролируется определённым участком – оператором. Он служит пусковым механизмом для функционирования структурных генов. Считывание генетического кода, т.е. формирование м-РНК, начинается с промотора – участка ДНК, являющегося точкой инициации для синтеза м-РНК, и далее распространяется последовательно вдоль оператора и структурных генов. Деятельность оперона находится под контролирующим влиянием другого участка цепи ДНК, получившего название гена-регулятора. Образование репрессора происходит в рибосомах ядра на матрице специфической м-РНК, синтезированной на гене-регуляторе. Репрессор имеет сродство к оператору и обратимо соединяется с ним в комплексе. Образование такого комплекса приводит к блокированию синтеза м-РНК, а следовательно, синтеза белка, т.е. функция гена-регулятора состоит в том, что через белок-репрессор запрещать деятельность оперона (структурных генов), синтезирующих м-РНК. Т.о. биосинтез м-РНК, контролирующий синтез белка в рибосомах, зависит от состояния репрессора.

Структура свойства и биологическая роль нуклеиновых кислот.

Нуклеиновые кислоты — линейные (реже — циклические) гетерополимеры, мономеры которых — мононуклеотиды. Нуклеотиды — это фосфорные эфиры нуклеозидов.

Строение мононуклеотида: азотистое основание (у всех нуклеиновых кислот); пентоза (рибоза у РНК, дезоксирибоза у ДНК); остаток фосфорной кислоты. Азотистое основание и пентоза составляют нуклеозид.

Номенклатура нуклеотидов

ТМФ встречается только в ДНК, УМФ — только в РНК. Если в составе мононуклеотида дезоксирибоза, то в начало его названия добавляется приставка «дезокси-». В составе нуклеиновых кислот мононуклеотиды связаны 3, 5-фосфодиэфирными связями между рибозами (дезоксирибозами) соседних мононуклеотидов через остаток фосфорной кислоты. Если молекула нуклеиновой кислоты не циклическая, концы ее различны. Один из них обозначается как 3′-конец, а другой — 5′-конец. Начальный — 5′-конец. Молекулярная масса нуклеиновых кислот сильно варьирует.

Биологическая роль нуклеиновых кислот и функции мононуклеотидов.

1. ДНК: хранение генетической информации.

2. РНК:

- хранение генетической информации (информосомы, некоторые РНК-вирусы);

- реализация генетической информации: и-РНК (м-РНК) — информационная (матричная), т-РНК (транспортная), р-РНК (рибосомальная). Участвуют в процессе синтеза белка;

- каталитическая функция: некоторые молекулы РНК катализируют реакции гидролиза 3′,5′-фосфодиэфирной связи в самой молекуле РНК-«самосплайсинг».

Функции мононуклеотидов:

1) структурная — построение нуклеиновых кислот, некоторых коферментов и простетических групп ферментов;

2) энергетическая — аккумуляторы энергии за счет имеющихся макроэргических связей. АТ Ф — универсальный аккумулятор энергии, энергия УТ Ф используется для синтеза гликогена, ЦТ Ф — для синтеза липидов, ГТФ — для движения рибосом в ходе трансляции (биосинтез белка) и передачи гормонального сигнала (G-белок);

3) регуляторная: мононуклеотиды — аллостерические эффекторы многих ключевых ферментов, цАМФ и цГМФ — посредники в передаче гормонального сигнала при действии многих гормонов на клетку (аденилатциклазная система), активируют протеинкиназы.

Репликация ДНК.

Одним из уникальных свойств молекулы ДНК является ее способность к самоудвоению - воспроизведению точных копий исходной молекулы. Благодаря этой способности молекулы ДНК, осуществляется передача наследственной информации от материнской клетки дочерним во время деления. Процесс самоудвоения молекулы ДНК называют репликацией.

Репликация - сложный процесс, идущий с участием ферментов (ДНК-полимераз и многих других). Репликация осуществляется полуконсервативным способом, то есть под действием ферментов молекула ДНК раскручивается и около каждой цепи, выступающей в роли матрицы, по принципу комплементарности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является неизменной, материнской, а вторая - вновь синтезированной. Раскручивание молекулы происходит на небольшом отрезке (несколько десятков нуклеотидов), называемом репликативной вилкой. Синтез дочерних цепей ДНК на одном участке сопровождается раскручиванием нового отрезка ДНК. Таким образом, репликативная вилка перемещается вдоль молекулы, пока не дойдет до точки окончания синтеза.

В материнской ДНК цепи антипараллельны. ДНК-полимеразы способны двигаться в одном направлении - от 3'-конца к 5'-концу, строя дочернюю цепь антипараллельно - от 5' к 3'-концу. Поэтому одна ДНК-полимераза передвигается в направлении 3'>5' по одной цепи ДНК (3'-5'), синтезируя дочернюю цепь, которая называется лидирующей. Другая ДНК-полимераза движется по другой цепи (5'-3') в обратную сторону (тоже в направлении 3'>5'), синтезируя вторую дочернюю цепь фрагментами (их называют фрагменты Оказаки), которые после завершения репликации сшиваются в единую цепь. Эта цепь называется отстающей. Таким образом, на цепи 3'-5' репликация идет непрерывно, а на цепи 5'-3' - прерывисто.

Во время репликации энергия молекул АТФ не расходуется, так как для синтеза дочерних цепей при репликации используются не дезоксирибонуклеотиды (содержат один остаток фосфорной кислоты), а дезоксирибонуклеозидтрифосфаты (содержат три остатка фосфорной кислоты). При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка отщепляются, и освободившаяся энергия используется на образование сложноэфирной связи между нуклеотидами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]