
- •Иллюстрированный самоучитель по экспертным системам
- •Рядовым читателям
- •Студентам и преподавателям
- •Инженерам-программистам
- •Научным работникам
- •Глава 1. Что такое экспертная система?
- •Глава 1.
- •1.1. Смысл экспертного анализа
- •1.2. Характеристики экспертных систем
- •1.3. Базовые функции экспертных систем
- •1.3.1. Приобретение знаний
- •1.1. Забытый пароль
- •1.3.2. Представление знаний
- •1.2. Синтаксис и семантика представления семейных отношений
- •1.3.3. Управление процессом поиска решения
- •1.3. Обслуживание автомобиля
- •1.3.4. Разъяснение принятого решения
- •1.4. Загадка одного портрета
- •1.4. Резюме и структура книги
- •1.4.1. Текущее состояние проблемы
- •1.4.2. Распределение материала книги по главам
- •Рекомендуемая литература
- •Упражнения
- •Глава 2. Обзор исследований в области искусственного интеллекта
- •Глава 2.
- •2.1. Классический период: игры и доказательство теорем
- •2.1.1. Поиск в пространстве состояний
- •2.1. Комбинаторный взрыв
- •2.1.2. Эвристический поиск
- •2.2. Алгоритм а
- •Конец алгоритма
- •2.2. Романтический период: компьютер начинает понимать
- •2.2.1. Система shrdlu
- •2.3. Сценарий посещения ресторана
- •2.2.2. Схемы представления знаний
- •2.4. Летучие мыши и проблема с пингвинами
- •2.3. Период модернизма: технологии и приложения
- •2.3.1. В знании сила
- •2.5. Процедуральное или декларативное знание
- •2.6. Машина логического вывода и база знаний
- •2.3.2. Периоды "зимней спячки" и "пробуждения" в истории искусственного интеллекта
- •Рекомендуемая литература
- •Упражнения
- •Глава 3. Представление знаний
- •Глава 3.
- •3.1. Представление знаний: принципы и методы
- •3.1. Молотки, графины и теоремы
- •3.2. Планировщик strips
- •3.2.1. Таблицы операторов и методика "средство -анализ завершения"
- •3.2.2. Анализ метода представления и управления в strips
- •3.3. Формулировка подцелей в mygin
- •3.3.1. Лечение заболеваний крови
- •3.3.2. База знаний системы mycin
- •3.3.3. Структуры управления в mycin
- •3.2. Комбинация гипотез
- •3.4. Оценка и сравнение характеристик экспертных систем
- •3.4.1. Оценка системы mycin
- •3.4.2. Сравнение mycin и strips
- •Рекомендуемая литература
- •Упражнения
- •Глава 4. Символические вычисления
- •Глава 4.
- •4.1. Символическое представление
- •4.2. Физическая символическая система
- •4.1. Главная гипотеза
- •4.3. Реализация символических структур на языке lisp
- •4.3.1. Структуры данных в языке lisp
- •4.2. Списки и точечные пары
- •4.3.2. Структура lisp-программы
- •4.3. Функции, их вычисление и проблема цитирования в clips
- •4.3.3. Приложение функции и лямбда-исчисление
- •4.3.4. Обработка списков
- •4.4. Примитивы в lisp
- •4.3.5. Сопоставление с образцом
- •4.4. Почему. Lisp не является языком представления знаний
- •4.4.1. Символический уровень и уровень знаний
- •4.4.2. Lisp и разработка программ
- •4.5. Гипотеза Смита
- •4.5. Языки представления знаний
- •Рекомендуемая литература
- •Упражнения
- •Глава 5. Системы, основанные на знаниях
- •Глава 5.
- •5.1. Канонические системы
- •5.1. Смысл порождений
- •5.2. Системы порождающих правил для решения проблем
- •5.2.1. Синтаксис представления правил
- •Листинг 5.1. Оргправило системы mycin, записанное на языке clips
- •Листинг 5.2. Правило, в котором используются переменные
- •5.2.2. Рабочая память
- •Листинг 5.3. Набор правил для проблемы в системе strips
- •5.2. Трассировка программы управления роботом
- •5.3. Управление функционированием интерпретатора
- •5.3.1. Разрешение конфликтов
- •5.3. Разрешение конфликтов в cups
- •5.3.2. Прямая и обратная цепочки рассуждений
- •Листинг 5.4. Набор правил для построения башни из блоков
- •5.4. Трассировка программы строительства башни
- •5.3.3. Правила и метаправила
- •5.5. Свойство выпуклости в clips: пингвины обретают способность летать (или не обретают)
- •Рекомендуемая литература
- •Упражнения
- •Листинг 5.5. Набор диагностических правил заболеваний брюшной полости на языке clips
- •Глава 6. Ассоциативные сети и системы фреймов
- •Глава 6.
- •6.1. Графы, деревья и сети
- •6.2. Ассоциативные сети
- •6.2.1. Разделение видов узлов и когнитивная экономия
- •6.2.2. Анализ адекватности ассоциативных сетей
- •6.3. Представление типовых объектов и ситуаций
- •6.3.1. Основные понятия концепции фреймов
- •6.3.2. Фреймы и графы
- •6.3.3. Значения по умолчанию и демоны
- •6.1. Реализация фреймов и наследования в языке clips
- •6.3.4. Множественное наследование
- •6.3.5. Сравнение сетей и фреймов
- •Рекомендуемая литература
- •Упражнения
- •Глава 7. Объектно-ориентированное программирование
- •Глава 7.
- •7.1. Язык krl
- •7.1. Процедуры и объекты
- •7.2. Языки loops и flavors
- •7.2.1. Передача сообщений
- •7.2. Формирование объекта класса на языке clips
- •7.2.2. Проблема наложения методов
- •7.2.3. Метаклассы
- •7.3. Языки clips и clos
- •7.3.1. Множественное наследование в clos и clips
- •Листинг 7.1. Объявление классов на языке clips
- •7.3.2. Наложение методов в clos и clips
- •7.3. Как сделать людей вежливыми
- •7.3.3. Метаклассы в clos и clips
- •Листинг 7.2. Файл nixon.H. Объявление классов, версия 1
- •Листинг 7.3. Файл nixon.H. Объявление классов, версия 2
- •Листинг 7.4. Файл nixon.H. Объявление классов, версия 3
- •Листинг 7.5. Файл nixon.H. Объявление классов, версия 4
- •7.5. Объектно-ориентированный анализ и конструирование экспертных систем
- •Рекомендуемая литература
- •Упражнения
- •Глава 8. Логическое программирование
- •Глава 8.
- •8.1. Формальные языки
- •8.1.1. Исчисление высказываний
- •8.1.2. Исчисление предикатов
- •8.1. Снова о роботах и комнатах
- •8.2. Язык prolog
- •Листинг 8.1. Простая программа на языке prolog, определяющая отношение on (на)
- •8.3. Опровержение резолюций
- •8.3.1. Принцип резолюций
- •8.3.2. Поиск доказательства в системе резолюций
- •8.4. Процедурная дедукция в системе planner
- •8.5.1. Правила поиска в языке prolog
- •8.5.2. Управление поиском в системе mbase
- •Рекомендуемая литература
- •Упражнения
- •Глава 9. Представление неопределенности знаний и данных
- •Глава 9.
- •9.1. Источники неопределенности
- •9.2. Экспертные системы и теория вероятностей
- •9.2.1. Условная вероятность
- •9.2.2. Коэффициенты уверенности
- •9.2.3. Коэффициенты уверенности и условные вероятности
- •9.3. Сомнительность и возможность
- •9.3.1. Нечеткие множества
- •9.3.2. Нечеткая логика
- •9.3.3. Теория возможности
- •9.4. Неопределенное состояние проблемы неопределенности
- •Рекомендуемая литература
- •Упражнения
- •Глава 10. Приобретение знаний
- •Глава 10.
- •10.1. Теоретический анализ процесса приобретения знаний
- •10.1.1. Стадии приобретения знаний
- •10.1.2. Уровни анализа знаний
- •10.1. Оболочки CommonKads и kastus
- •10.1.3. Онтологический анализ
- •10.2. Оболочки экспертных систем
- •10.2.1. Система emycin
- •10.2.2. Сопровождение и редактирование баз знаний с помощью программы teiresias
- •10.3. Методы приобретения знаний
- •10.3.1. Использование опроса экспертов для извлечения знаний в системе compass
- •10.3.2. Автоматизация процесса извлечения знаний в системе opal
- •10.3.3. Графический интерфейс модели предметной области
- •10.3.4. Эффективность программы opal
- •10.4. Приобретение новых знаний на основе существующих
- •Рекомендуемая литература
- •Упражнения
- •Глава 11. Эвристическая классификация (I)
- •Глава 11.
- •11.1. Классификация задач экспертных систем
- •11.2. Классификация методов решения проблем
- •11.2.1. Эвристическое сопоставление
- •11.2.2. Общность эвристической классификации
- •11.1. Определение понятия "оружие нападения"
- •11.3. Классификация или конструирование?
- •Рекомендуемая литература
- •Упражнения
- •Глава 12. Эвристическая классификация (II)
- •Глава 12.
- •12.1. Инструментальные средства и задачи, решаемые экспертной системой
- •12.2. Эвристическая классификация в системах mud и more
- •12.2.1. Модель предметной области выполнения буровых работ
- •12.1. Диагностические правила в м u d
- •12.2.2. Стратегии приобретения знаний
- •12.2.3. Использование коэффициентов уверенности в программе more
- •12.2.4. Опыт эксплуатации системы more
- •12.3. Совершенствование стратегий
- •12.3.1. Уроки проекта guidon
- •12.3.2. Структура задач в системе neomycin
- •Рекомендуемая литература
- •Упражнения
- •Глава 13. Иерархическое построение и проверка гипотез
- •Глава 13.
- •13.1. Влияние сложности пространства гипотез на организацию работы системы
- •13.1. Обход дерева
- •13.2. Структурированные объекты в centaur
- •13.2.1. Структура фреймов в centaur
- •13.2.2. Правила, включенные в прототипы
- •13.3. Формирование суждений на базе модели в системе internist
- •13.3.1. Представление знаний в дереве заболеваний
- •13.3.2. Методика выделения правдоподобных гипотез в internist
- •13.3.3. Проблемы, обнаруженные в процессе эксплуатации системы internist
- •13.4. Рабочая среда инженерии знаний tde
- •Рекомендуемая литература
- •Упражнения
- •Глава 14. Решение проблем конструирования (I)
- •Глава 14.
- •14.1. Области применения методов конструктивного решения проблем
- •14.2. Система r1/xcon
- •14.2.1. Компоненты и ограничения
- •14.2.2. Использование текущего контекста для управления структурой задачи
- •14.1. Стратегии разрешения конфликтов lex и меа
- •14.2.3. Формирование суждений с учетом ограничений: метод Match
- •14.3. Использование знаний, развитие и расширение системы xcon
- •14.3.1. Извлечение знаний в системе r1/xcon
- •14.3.2. Совершенствование и расширение системы r1/xcon
- •14.2. Совершенствование системы xcon
- •Рекомендуемая литература
- •Упражнения
- •Глава 15. Решение проблем конструирования (II)
- •Глава 15.
- •15.1. Стратегии конструирования
- •15.2. Архитектура систем планирования и метапланирования
- •15.1. Программа планирования мероприятий
- •15.3. Извлечение, представление и применение знаний о проектировании
- •15.3.1. Реализация обратного прослеживания в системе vt
- •15.3.2. Приобретение знаний с помощью системы salt
- •15.4. Итоги анализа систем решения проблем конструирования
- •Рекомендуемая литература
- •Упражнения
- •Глава 16. Средства формирования пояснений
- •Глава 16.
- •16.1. Формирование пояснений на основе знаний
- •16.1.1. Подсистема формирования пояснений в mycin
- •16.1.2. Формирование пояснений в системах, производных от mycin
- •16.1.3. Формирование пояснений на основе фреймов
- •16.1.4. Организация вывода пояснений в системе centaur
- •16.1.5. Использование мультимедийного интерфейса для формирования пояснений
- •16.2. Формирование пояснений и автоматическое программирование
- •16.2.1. Автоматическое программирование в системе xplan
- •16.2.2. Проект Explainable Expert Systems
- •16.2.3. Планирование текстов пояснений и модели пользователей в pea
- •16.3. Перспективы дальнейших исследований методов формирования пояснений
- •Рекомендуемая литература
- •Упражнения
- •Глава 17. Инструментальные средства разработки экспертных систем
- •Глава 17.
- •17.1. Общая характеристика инструментальных средств для построения экспертных систем
- •17.2. Оболочки экспертных систем
- •17.3. Языки программирования высокого уровня
- •17.3.1. Языки описания порождающих правил
- •17.3.2. Объектно-ориентированные языки
- •17.3.3. Языки логического программирования экспертных систем
- •17.3.4. Многофункциональные программные среды
- •17.1. Cups как многофункциональная среда программирования
- •17.3.5. Дополнительные модули
- •17.2. Логический вывод в разных контекстах
- •17.4. Использование инструментальных средств
- •17.4.1. Характерные сложности и способы их избежать
- •17.4.2. Выбор подходящего инструментария для разработки экспертной системы
- •17.4.3. Практическое освоение инструментальных средств
- •17.3. Правила и процедуры в инструментальной среде м.4
- •17.4.4. Стиль программирования
- •17.5. Некоторые максимы разработки экспертных систем
- •Рекомендуемая литература
- •Упражнения
- •Глава 18. Системы с доской объявлений
- •Глава 18.
- •18.1. Принципы организации систем с доской объявлений
- •18.2. Системы hearsay, age и орм
- •18.2.1. Почему для hearsay-II выбрана такая архитектура
- •18.2.2. Использование источников знаний в hearsay-II
- •18.2.3. Система hearsay-III— оболочка для создания систем с доской объявлений
- •18.2.4. Инструментальные среды age и орм
- •18.3. Среда с доской объявлений вв
- •18.3.1. Уровни абстракции в среде вв
- •18.3.2. Системы вв1 и accord
- •18.3.3. Система protean
- •18.3.4. Интеграция стратегий логического вывода
- •18.3.5. Общая характеристика вв
- •18.4. Эффективность и гибкость модели с доской объявлений
- •18.4.1. Организация доски объявлений в системе gbb
- •18.4.2. Компоновка доски объявлений в среде erasmus
- •18.5. Организация параллельных вычислений в системах cage и poligon
- •Рекомендуемая литература
- •Упражнения
- •Глава 19. Система отслеживания истинности предположений
- •Глава 19.
- •19.1. Отслеживание зависимостей
- •19.1.1. Релаксация в сети
- •19.1.2. Пересмотр допущений
- •19.1. Запись информации о связях
- •19.2. Пересмотр теорий высказываний
- •19.3. Немонотонное обоснование
- •19.2. Пара конфликтующих выражений
- •19.4. Работа со множеством контекстов
- •19.4.1. Отслеживание истинности предположений, основанное на анализе допущений
- •19.4.2. Использование систем отслеживания истинности предположений для диагностирования на основе моделей
- •19.5. Сравнение различных вариантов организации систем отслеживания истинности предположений
- •Рекомендуемая литература
- •Упражнения
- •Глава 20. Формирование знаний на основе машинного обучения
- •Глава 20.
- •20.1. Индуктивное обучение
- •20.2. Система Meta-dendral
- •20.2.1. Формирование и уточнение правил
- •20.2.2. Пространство версий
- •20.2.3. Алгоритм отсеивания кандидатов
- •20.2.4. Сопоставление экземпляров с образцами в Meta-dendral
- •20.3. Построение дерева решений и порождающих правил
- •20.3.1. Структура дерева решений
- •20.3.2. Алгоритм формирования дерева решений по обучающей выборке
- •20.4. Уточнение наборов правил
- •Рекомендуемая литература
- •Упражнения
- •Глава 21. Сети доверия
- •Глава 21.
- •21.1. Теория Демпстера—Шефера
- •21.1.1. Функции доверия
- •21.1.2. Применение теории Демпстера—Шефера к системе mycin
- •21.2. Методика Перла
- •21.1. Байесовские сети
- •21.3. Сравнение методов неточных рассуждений
- •21.4. Резюме
- •Рекомендуемая литература
- •Упражнения
- •Глава 22. Рассуждения, основанные на прецедентах
- •Глава 22.
- •22.1. База прецедентов
- •22.1.1. Программа chef
- •22.1.2. Методы извлечения и адаптации прецедентов
- •2. Найти соответственное свойство в хранимых прецедентах.
- •3. Сравнить два значения и вычислить степень близости т.
- •4. Умножить эту оценку на вес свойства с.
- •22.2. Обучение с помощью компьютера: система сато
- •22.2.1. Предметная область программы сато
- •22.2.2. Расследования и рассуждения в юриспруденции
- •22.2.3. Обучение с помощью системы сато
- •22.3. Формирование отчетов в системе frank
- •22.4. Сравнение систем, основанных на правилах и прецедентах
- •Рекомендуемая литература
- •Упражнения
- •Глава 23. Гибридные системы
- •Глава 23.
- •23.1. Методы обучения в системе odysseus
- •23.2. Системы odysseus и minerva
- •23.2.1. Оболочка экспертной системы minerva
- •23.2.2. Обучение в системе odysseus
- •23.3. Использование прецедентов для обработки исключений
- •23.4. Гибридный символический подход и нейронные сети
- •23.4.1. Нейронные сети
- •23.4.2. Scalir — гибридная система для извлечения правовой информации
- •23.4.3. Организация обучения в системе scalir
- •23.5. Будущее гибридных систем
- •Рекомендуемая литература
- •Упражнения
- •Глава 24. Заключение
- •Глава 24.
- •24.1. Загадка искусственного интеллекта
- •24.2. Представление знаний
- •24.3. Языки программирования систем искусственного интеллекта
- •24.4. Решение практических проблем
- •24.5. Архитектура экспертных систем
- •Рекомендуемая литература
- •Приложение.
- •А.1. Краткая история clips
- •А.2. Правила и функции в clips
- •А.2.1. Факты
- •А.2.2. Правила
- •А.2.3. Наблюдение за процессом интерпретации
- •А.2.4. Использование шаблонов
- •A.2.5. Определение функций
- •А.3. Объектно-ориентированные средства в clips
- •А.4. Задача "Правдолюбцы и лжецы"
- •А.4.1. Анализ проблемы
- •А.4.2. Онтологический анализ и представление знаний
- •А.4.3. Разработка правил
- •Листинг а.1. Трассировка решения задачи р0
- •Упражнение 1
- •А.4.4. Расширение набора правил — работа с составными высказываниями
- •Упражнение 2
- •Листинг а.2. Трассировка решения задачи р4
- •A.4.5. Обратное прослеживание и множество контекстов
- •Упражнение 3
- •Выявление противоречий
- •Подготовка рабочей памяти к выполнению отката
- •Выполнение отката
- •Упражнение 4
- •Восстановление контекста
- •Упражнение 5
- •А.4.6. Обработка метавысказываний
- •А.4.7. Полный листинг программы
- •А.5. Стиль программирования на языке clips
- •Упражнения
Рекомендуемая литература
Хорошим введением в проблематику искусственного интеллекта могут послужить книги Рича и Найта [Rich and Knight, 1991] и Уинстона [Winston, 1992]. Для студентов хорошим источником ссылок на работы в этой области, хотя и несколько устаревшие с точки зрения сегодняшнего дня, являются различные выпуски серии Handbook of Artificial Intelligence ([Barr and Feigenbaum, 1981, 1982]; [Cohen and Feigenbaum, 1982]). Читателям, интересующимся проблемой машинного распознавания естественного языка, рекомендую прочесть книгу Аллена (Allen, 1995), в которой описаны фундаментальные исследования в этой области, а о том, каким видится будущее искусственного интеллекта из окон лабораторий МИТ, читатель сможет узнать в книге Уинстнона и Шелларда [Winston andShellard, 1990].
Начальные главы книги Нильсона [Nilsson, 1980] по-прежнему остаются лучшим описанием методики эвристического поиска, но более строгое математическое изложение этого материала можно найти в работе Перла [Pearl, 1984]. Некоторые примеры приложения методики эвристического поиска, взятые из современной практики, собраны в сборнике [Rayward-Smith et al, 1996], а Рейард-Смит в своей книге излагает современный взгляд на эти методы [Rayward-Smith, 1994].
Алгоритмы, аналогичные рассмотренному А , по-прежнему привлекают немалое внимание. Например, в одной из последних статей Корфа и Рейда [Korf and Reid, 1998] показано, что эвристики значительно улучшают процесс поиска не тем, что сужают поиск, как считалось до сих пор, а уменьшая его глубину. Таким образом, оказывается, что эвристики способствуют отысканию более коротких путей решения, не снижая при этом фактор ветвления.
Упражнения
1. Почему пакет программ статистического анализа нельзя считать программой искусственного интеллекта?
2. Могут ли психологи подсказать нам, как сконструировать думающую машину?
3. Как вы понимаете термин "пространство поиска"? Что представляет собой пространство поиска в игре в шахматы?
4. Как вы понимаете термин "пространство решений"? Что представляет собой пространство решений в игре в шахматы?
5. Ниже приведен алгоритм поиска в глубину. Он записан с помощью функциональной нотации, которая подчеркивает его рекурсивную структуру. Таким образом, dfs представляет собой функцию трех аргументов: goal, current и pending:
goal — это объект поиска,
current — текущий узел на графе состояний (в самом начале — узел исходного состояния),
pending — список узлов, претендующих на обработку (в самом начале — пустой).
В дальнейшем используются следующие обозначения:
символ := означает присваивание;
функция expand формирует узлы, следующие за аргументом этой функции; знак + означает слияние двух списков, т.е.
(а b с) + (d e f ) = (а b с d e f);
() означает пустой список;
first и rest — функции, которые возвращают начало и конец списка:
first(a b с) = a
rest(a b c) = (b c).
I) Выразите следующий алгоритм на каком-либо из известных вам языков программирования.
dfsfgoal, current, pending)
{
if current = goal, then success;
else
{
pending := expand (current}+ pending;
if pending = () then fail;
else dfs(goal, first(pending), .rest( pending));
} }
II) Разработайте аналогичный алгоритм для поиска в ширину и реализуйте его на том же языке. Необходимо будет изменить только одно выражение в функции dfs.
6. Рассмотрите головоломку "миссионеры и каннибалы", схематически представленную на рис. 2.6.
Рис. 2.6. Головоломка "миссионеры и каннибалы "
Условия головоломки следующие.
На левом берегу реки находятся три миссионера и три каннибала. К этому же берегу причалена единственная лодка. На этой лодке нужно переправить всех миссионеров и всех каннибалов на правый берег при условии, что лодка одновременно может перевозить не более двоих, в обратный путь на лодке должен отправиться хотя бы один человек. Таким образом, дозволены следующие варианты шагов (переправ):
К-> одного каннибала с левого берега на правый
КК-> двух каннибалов с левого берега на правый
МК-> одного миссионера и одного каннибала с левого берега на правый
ММ-> двух миссионеров с левого берега на правый
М-> одного миссионера с левого берега на правый
К этому нужно добавить такие же варианты переправы с правого берега на левый. Но есть еще одно обстоятельство, существенно влияющее на весь процесс: если окажется, что каннибалов на любом из берегов больше, чем миссионеров, то несчастных просто съедят. Решение головоломки — это последовательность шагов с учетом описанных ограничений, переводящая систему в заданное конечное состояние.
Конечно, эту головоломку можно решить и простым перебором и испытанием всех возможных состояний, поскольку пространство поиска не так уж велико. На рис. 2.7 показано, как образуется пространство поиска рекурсивным применением дозволенных операторов, причем на графе состояний особо выделены узлы, приводящие к образованию петель, и узлы, соответствующие недозволенным состояниям (когда кто-либо из миссионеров обречен).
Рис. 2.7. Построение пространства поиска в головоломке "миссионеры и каннибалы"
На рис. 2.8 показано законченное пространство поиска, сформированное алгоритмом поиска в глубину, причем перебор возможных шагов ведется в том порядке, в котором они перечислены в представленном в условии, списке.
Рис. 2.8. Законченное пространство поиска в головоломке "миссионеры и каннибалы ", сформированное алгоритмом поиска в глубину
В процессе поиска было развернуто 22 узла, а путь, приводящий к успеху, содержит 11 узлов. Таким образом, оценка проницательности поиска равна 11/22=0.5. Грубо говоря, проницательность поиска говорит нам о том, насколько данный алгоритм позволил избежать выполнения ненужной работы в процессе Поиска решения. Чем выше значение проницательности поиска для того или иного алгоритма, тем лучше.
I) Выберите представление состояний на берегах реки и разработайте программу, которая решает эту задачу, используя оба варианта алгоритмов поиска— в глубину и в ширину. С разными способами формализации этой
задачи можно познакомиться в работе Амарела [Amarel, 1968]. Обратите внимание на то, что существуют способы представления состояний, которые позволяют более экономно использовать вычислительные ресурсы при решении задачи.
II) Попытайтесь улучшить оценку проницательности поиска, полученную для алгоритма поиска в глубину (рис. 2.8), изменив порядок, в котором анализируются в каждом очередном состоянии дозволенные операторы.
III) Обобщите программу как в части количества пассажиров в лодке, так и в части количества миссионеров/каннибалов. Сделайте их параметрами программы, задаваемыми извне. Если вы начнете проводить эксперименты с такой программой, то убедитесь, что, во-первых, эти параметры нельзя варьировать независимо, поскольку при некоторых комбинациях задача не имеет решения, а во-вторых, увеличение значений любого из параметров существенно расширяет пространство поиска.
7. Другая классическая головоломка, знакомая в несколько ином виде многим еще со школьной скамьи, — "Восьмерка". В головоломке принимает участие восемь пронумерованных фишек, которые могут перемещаться по игровому полю 3x3. Цель состоит в том, чтобы из некоторого случайного расположения фишек перейти к упорядоченному (рис. 2.9).
Мы несколько модифицируем ограничения, сформулировав их в терминах перемещения единственного "пустого поля".
Рис. 2.9. Головоломка "Восьмерка"
В отличие от задачи о миссионерах и каннибалах, эту головоломку можно решить за приемлемое время методом "слепого" поиска. Дело в том, что головоломка имеет только 9! состояний и, следовательно, можно использовать для поиска очередного хода оценочную функцию по методике "восхождения на гору".
I) Придумайте оценочную функцию для этой задачи и разработайте программу, которая реализует поиск по методике "восхождения на гору". Возможные варианты оценочной функции некоторого состояния должны включать, во-первых, количество фишек, которые стоят не на своих местах, а во-вторых, сумму расстояний от текущего положения каждой фишки до предназначенного ей целевого (имеются в виду расстояния по Евклиду).
II) Какая из предложенных выше оценочных функций является более чувствительной? Можете ли вы предложить лучший способ управления поиском?
III) Как будет работать ваша программа, если увеличить количество фишек до 15, а размер игрового поля до 4x4? В этом случае придется исследовать 16! состояний.
Эту головоломку с точки зрения методов искусственного интеллекта рассматривал Нильсон (см. [Nilsson, 1980, Chapter 1].
8. Просмотрите описание алгоритма А во врезке 2.2 и выполните следующее.
I) Реализуйте алгоритм А на любом известном вам языке программирования.
II) С помощью созданной программы попробуйте решить головоломки "о миссионерах и каннибалах" и "Восьмерку". (Придется придумать оценочную функцию для головоломки "о миссионерах и каннибалах". Воспользуйтесь оценочной функцией из упр. 7.)
III) Попробуйте с помощью этого алгоритма решить криптоарифметическую головоломку, описанную ниже:
|
|
|
|
|
|
|
BEST |
SEND |
DONALD |
CROSS |
|
|
+MADE |
+MORE |
+GERALD |
+ROADS |
|
|
MASTER |
MONEY |
ROBERT |
DANGER |
|
|
|
|
|
|
|
Термин "криптоарифметическая" означает использование цифр, зашифрованных буквами, и соответственно чисел, зашифрованных словами. Задача состоит в том, чтобы найти, какие цифры нужно подставить вместо букв, чтобы представленные арифметические операции над расшифрованными числами давали верный результат. Такая задача рассматривается во многих классических работах по искусственному интеллекту (см., например, [Raphael, 1976, Chapter 3].
Вам придется подумать над тем, как представить слагаемые и сумму, какие возможны в решении этой задачи "ходы" (т.е. какой набор операций можно предложить для перехода из одного состояния в другое) и какую эвристику можно применить для управления поиском.