Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Individualnye_zadania / 7_Differ.doc
Скачиваний:
14
Добавлен:
12.02.2015
Размер:
2.53 Mб
Скачать

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Дифференциальное и интегральное исчисление функции одной переменной

Индивидуальные задания

Пособие разработано ст. преп. Смышляевой Т. В.

Одобрено методической комиссией кафедры «Высшая математика»

© 2007, каф. «Высшая математика» ПГТУ

Пермь 2007 Вариант решения заданий

  1. Исходя из определения производной (не пользуясь формулами дифференцирования), найти производную функции

Решение:

  1. Придаем аргументу произвольное приращение и, подставляя в данное выражение функции вместо наращенное значение , находим наращенное значение функции

В данном случае

  1. Находим приращение функции

  1. Делим приращение функции на приращение аргумента, т. е. составим отношение

  1. Ищем предел этого отношения при . Этот предел и даст искомую производную от функции ;

    1. Производная сложной функции

Производная сложной функции равна произведению её производной по промежуточному аргументу на производную этого аргумента по независимой переменной.

Найти производные следующих функций:

Решение:

    1. а) Производная неявной функции

Найти для данной неявной функции

Решение:

Дифференцируем по обе части равенства, где есть функция от , получим .

Учитывая, что , получаем

б) Логарифмическое дифференцирование

Логарифмическое дифференцирование полезно применять для нахождения производной от показательно - степенной функции , где - функции от и когда заданная функция содержит логарифмирующиеся операции (умножения, деления, возведения в степень, извлечение корня).

Найти производные следующих функций:

Решение:

Применяется логарифмическое дифференцирование, последовательно находим:

в) Производная от функции, заданной параметрически

Производная

Найти производную для функции, заданной параметрически

Решение:

Найдем . Следовательно,

    1. Показать, что функция обращает уравнение в тождество.

Решение:

Выразим в явном виде . Найдем

Подставляем и в левую часть уравнения, получаем

Подставляем в правую часть равенства, получаем

, что и требовалось доказать.

    1. Производные высших порядков

а) Производная явной функции

Решение:

Дифференцируя функцию , получим .

Дифференцируя производную , получим

б) Производная неявной функции

Для данной неявной функции найти .

Решение:

Дифференцируем по обе части равенства, где есть функция от , получаем

Отсюда найдем .

Найдем :

Подставляем в левую часть найденную производную , получаем:

.

Учитывая, что , получим или

    1. Производная от функции, заданной параметрически

Для функции, заданной параметрически, найти .

Решение:

Находим производные по параметру .

Далее находим производную от , а затем искомую вторую производную от как отношение производных от и от .

  1. Касательная и нормаль к кривой

Если плоская кривая отнесена к прямоугольной системе координат, то уравнение касательной и нормали к ней в точке имеют вид:

, где - значение в точке производной из уравнения кривой.

Найти уравнение касательной и нормали к эллипсу в точке, где .

Решение:

При , , получаем точку

Найдем

При , получаем .

Уравнение касательной:

Уравнение нормали:

  1. Теорема Ролля, Лагранжа и Коши.

Теорема Ролля

Если функция :

  1. непрерывна на отрезке [a, b]

  2. имеет конечную производную в каждой точке интервала (a, b)

  3. принимает равные значения на концах отрезка, , то в интервале (a, b) существует по крайней мере одна точка с, в которой производная функции обращается в нуль: .

Функция на концах отрезка [0, 4] принимает равные значения .

Справедлива ли для этой функции теорема Ролля на отрезке [0, 4]?

Решение:

Найдем . При , не существует. Нарушено второе условие теоремы Ролля.

Теорема Лагранжа.

Если функция :

  1. непрерывна на отрезке [a, b]

  2. имеет конечную производную в каждой точке интервала (a, b), то найдется по крайней мере одна внутренняя точка с интервала (a, b), , для которой .

Проверить выполнение условий теоремы Лагранжа для функции и найти соответствующее промежуточное значение с.

Решение:

Функция непрерывна и дифференцируема для всех значений , причем . Отсюда по формулам Лагранжа имеем

Следовательно, ; годится только значение , для которого справедливо неравенство .

Теорема Коши.

Пусть функции удовлетворяют следующим условиям:

  1. непрерывна на отрезке [a, b]

  2. имеют конечные производные во всех точках интервала (a, b)

  3. для любого , то внутри отрезка [a, b] найдется такая точка , , что

Проверить справедливость формулы Коши для функций на отрезке [1; 2].

Решение:

Функции непрерывны и дифференцируемы при всех значениях . Производные данных функций равны соответственно . На отрезке [1, 2], .

Тогда между двумя значениями и существует значение , удовлетворяющее равенству

.

Вариант 1

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке Individualnye_zadania