
- •Химия окружающей среды Учебное пособие
- •Физико-химические процессы в литосфере Введение
- •1. Строение литосферы и структура земной коры
- •Примеры решения задач
- •2. Минералы и горные породы
- •2.1. Магматические породы
- •2.2. Осадочные породы
- •2.3. Метаморфические горные породы
- •Пример решения задач
- •3. Гипергенез и почвообразование
- •Пример решения задач
- •4. Механический состав почв
- •Примеры решения задач
- •5. Элементный состав почв
- •Примеры решения задач
- •6. Органические вещества почвы
- •6.1. Классификация органических веществ почвы
- •6.2. Неспецифические органические соединения в почвах
- •6.3. Специфические гумусовые вещества почв
- •6.4. Органоминеральные соединения в почвах
- •Примеры решения задач
- •7. Поглотительная способность почв
- •7.1. Катионообменная способность почв
- •7.2. Обменные катионы почв
- •Примеры решения задач
- •8. Щелочность и кислотность почв
- •Примеры решения задач
- •9. Соединения азота в почве
- •Примеры решения задач
- •10. Соединения фосфора в почве
- •Примеры решения задач
- •Контрольные вопросы по теме «Физико-химические процессы в литосфере»
- •Задачи для самостоятельного решения
- •«Физико-химические процессы в литосфере»
- •Вопросы
- •К учебному модулю
- •Задачи к учебному модулю
- •Литература
- •Содержание
- •Учебное издание
6.3. Специфические гумусовые вещества почв
Специфические гумусовые вещества появляются в почве в результате протекания процессов гумификации органических остатков. Под гумификацией понимают совокупность процессов превращения исходных органических веществ в гуминовые кислоты и фульвокислоты.
Гуминовые кислоты представляют собой более устойчивые соединения, чем органические соединения, попадающие в почву с растительными остатками. Поэтому неспецифические органические соединения почвы существуют относительно короткие промежутки времени, и непрерывная цепь превращений растительных остатков и продуктов их трансформации задерживается на стадии образования гуминовых кислот. Гуминовые кислоты подвергаются минерализации с образованием СО2 и Н2О или образуют фрагменты, участвующие в синтезе новых молекул гумусовых кислот. Этот процесс протекает очень медленно, и время жизни гуминовых кислот составляет сотни и тысячи лет.
Гуминовые кислоты представляют собой группу веществ, извлекаемых из почвы щелочами в виде темно-окрашенного раствора (гуматов натрия, аммония или калия) и осаждаемых минеральными кислотами в виде аморфного осадка - геля.
Гуминовые кислоты имеют следующий элементный состав: 50-60% углерода, 2-6 % водорода, 31-40 % кислорода и 2-6 % азота. Колебания в элементном составе гуминовых кислот объясняются тем, что они не являются химически индивидуальными кислотами определенного строения, а представляют собой группу высокомолекулярных соединений, сходных по составу и свойствам.
По данным гель-хроматографических исследований, нижний предел молекулярных масс гуминовых кислот определяется значениями 5000-6000 Дальтон (Д). Встречаются кислоты с молекулярной массой 400 000-650 000 Д. Однако основное количество гуминовых кислот имеет молекулярную массу 20 000-80 000 Д.
Рис. 5. Формула структурной ячейки гуминовой кислоты (по Д. С. Орлову)
До настоящего времени формулы гуминовых кислот установлены лишь гипотетически. Наиболее полно накопленные экспериментальные данные учтены и отражены в формулах, предложенных И. Д. Комиссаровым в 1971 г. и Д. С. Орловым в 1977 г. (рисунок 5). Светлоокрашенные гумусовые вещества, остающиеся в растворе после подкисления щелочной вытяжки и отделения гуминовых кислот, определяют как фульвокислоты. Элементный состав фульвокислот характеризуется меньшим, чем у гуминовых кислот, содержанием кислорода и углерода. Содержание элементов в фульвокислотах составляет: 44-49 % углерода, 44-49 % кислорода, 3-5 % водорода и 2-4 % азота.
По данным гель-хроматографических исследований, фульвокислоты всех типов почв представлены одной или двумя фракциями с молекулярными массами 10000-15000 и 4000-6000 Д.
Несмотря на то, что фульвокислоты по сравнению с гуминовыми кислотами имеют более высокую растворимость и меньшую молекулярную массу, об их строении известно еще очень мало. В соответствии с гипотезой X. Кодама и М. Шнитцера, фрагмент строения фульвокислоты включает в себя два ароматических кольца, шесть групп СООН, две кетонные группы С=О, два фенольных и три спиртовых гидроксила.
Количественно и качественно установлено присутствие в составе молекул гуминовых кислот и фульвокислот различных функциональных групп: аминогрупп, амидных, альдегидных, карбоксильных, карбоксилатных, кетонных, метоксильных, фенольных, хинонных, гидроксихинонных, пептидных групп, а также спиртовых и фенольных ОН-групп.
Общую кислотность гумусовых соединений обусловливает присутствие в молекулах карбоксильных и фенольных ОН-групп. В фульвокислотах кислотность преимущественно связана с карбоксильными группами. В гуминовых кислотах количество фенольных и карбоксильных ОН-групп практически одинаково (таблица 7).
Таблица 7.Среднее количество кислородсодержащих функциональных групп в гумусовых кислотах, ммоль/100 г почвы
Функциональные группы |
Гуминовые кислоты |
Фульвокислоты |
Карбоксильные СООН |
360 |
820 |
Фенольные ОН |
390 |
300 |
Группа ОН слабых кислот |
260 |
610 |
и спиртов |
|
|
Хинонные, кетонные С=О |
290 |
270 |
Метоксильные ОСН3 |
60 |
80 |