
- •Т. Н. Матыцина е. К. Коржевина линейная алгебра
- •Оглавление
- •Введение
- •1. Множества
- •1.1. Множества и их элементы. Способы задания множеств
- •1.2. Подмножества. Диаграммы Эйлера – Венна
- •1.3. Операции над множествами и их свойства
- •1. Объединение (или сумма).
- •2. Пересечение (или произведение).
- •3. Разность.
- •4. Декартовое произведение (или прямое произведение).
- •Свойства операций над множествами
- •1.4. Метод математической индукции
- •1.5. Комплексные числа
- •Операции над комплексными числами
- •Геометрическая интерпретация комплексных чисел
- •Тригонометрическая форма комплексного числа
- •Действия над комплексными числами в тригонометрической форме
- •3. Возведение в степень.
- •4. Извлечение корня n-ой степени.
- •Показательная форма комплексного числа
- •2. Бинарные отношения
- •2.1. Понятие отношения
- •Способы задания бинарных отношений
- •Операции над бинарными отношениями
- •2.2. Свойства бинарных отношений
- •2.3. Отношение эквивалентности
- •2.4. Функции
- •3. Матрицы и действия над ними
- •3.1. Общие понятия
- •3.2. Основные операции над матрицами и их свойства
- •3.2.1. Сложение однотипных матриц
- •3.2.2. Умножение матрицы на число
- •3.2.3. Умножение матриц
- •3.3. Транспонирование матриц
- •4. Определители квадратных матриц
- •4.1. Определители матриц второго и третьего порядка
- •4.2. Определитель матрицы n-го порядка
- •4.3. Свойства определителей
- •4.4. Практическое вычисление определителей
- •5. Ранг матрицы. Обратная матрица
- •5.1. Понятие ранга матрицы
- •5.2. Нахождение ранга матрицы методом окаймления миноров
- •5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- •5.4. Понятие обратной матрицы и способы ее нахождения
- •Алгоритм нахождения обратной матрицы
- •Нахождение обратной матрицы с помощью элементарных преобразований
- •6. Системы линейных уравнений
- •6.1. Основные понятия и определения
- •6.2. Методы решения систем линейных уравнений
- •6.2.1. Метод Крамера
- •6.2.2. Метод обратной матрицы
- •6.2.3. Метод Гаусса
- •Описание метода Гаусса
- •6.3. Исследование системы линейных уравнений
- •6.4. Однородные системы линейных уравнений
- •Свойства решений однородной системы линейных уравнений
- •Фундаментальный набор решений однородной системы линейных уравнений
- •7. Арифметическое n-мерное векторное пространство
- •7.1. Основные понятия
- •7.2. Линейная зависимость и независимость системы векторов
- •Свойства линейной зависимости системы векторов
- •Единичная система векторов
- •Две теоремы о линейной зависимости
- •7.3. Базис и ранг системы векторов
- •Базис пространства Rn
- •Ранг системы векторов
- •8. Векторные (линейные) пространства
- •8.1. Определение векторного пространства над произвольным полем.
- •Простейшие свойства векторных пространств
- •Линейная зависимость и независимость системы векторов
- •8.2. Подпространства. Линейные многообразия
- •Пересечение и сумма подпространств
- •Линейные многообразия
- •8.3. Базис и размерность векторного пространства
- •8.3.1. Конечномерные векторные пространства
- •Базис конечномерного векторного пространства
- •8.3.2. Базисы и размерности подпространств
- •8.3.3. Координаты вектора относительно данного базиса
- •8.3.4. Координаты вектора в различных базисах
- •8.4 Евклидовы векторные пространства
- •Скалярное произведение в координатах
- •Метрические понятия
- •Процесс ортогонализации
- •Скалярное произведение в ортонормированном базисе
- •Ортогональное дополнение подпространства
- •9. Линейные операторы
- •9.1. Основные понятия и способы задания линейных операторов
- •Способы задания линейных операторов
- •9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- •Матрицы линейного оператора в различных базисах
- •9.3. Подобные матрицы
- •Свойства отношения подобия матриц
- •9.4. Действия над линейными операторами
- •1. Сложение линейных операторов.
- •Свойства сложения линейных операторов
- •9.5. Ядро и образ линейного оператора
- •9.6. Обратимые линейные операторы
- •9.7. Собственные векторы линейного оператора
- •9.7.1. Свойства собственных векторов
- •9.7.2. Характеристический многочлен матрицы
- •9.7.3. Нахождение собственных векторов линейного оператора
- •9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- •9.7.5.Условия, при которых матрица подобна диагональной матрице
- •10. Жорданова нормальная форма матрицы линейного оператора
- •10.1. Понятие λ-матрицы
- •Свойства λ-матрицы
- •10.2. Жорданова нормальная форма
- •10.3.Приведение матрицы к жордановой (нормальной) форме
- •Алгоритм приведения матрицы a к жордановой форме
- •11. Билинейные и квадратичные формы
- •11.1. Билинейные формы
- •Свойства билинейных форм
- •Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- •11.2. Квадратичные формы
- •Приведение квадратичной формы к каноническому виду
- •Закон инерции квадратичных форм
- •Классификация квадратичных форм
- •Необходимое и достаточное условие знакоопределенности квадратичной формы
- •Необходимое и достаточное условие знакопеременности квадратичной формы
- •Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- •Критерий Сильвестра знакоопределенности квадратичной формы
- •Заключение
- •Библиографический список
- •Линейная алгебра
- •156961, Г. Кострома, ул. 1 Мая, 14
1.2. Подмножества. Диаграммы Эйлера – Венна
Определение 1.4. Множество B называется подмножеством множества A, если каждый элемент множества B принадлежит множеству A.
Пример 1.2. Пусть А = {1, 2, 3, 4, 5, 6, 7}, а B = {2, 3, 5, 7}. Множество В является подмножеством множества А, поскольку каждый элемент множества В принадлежит множеству А.
Если множество B является подмножеством множества A, то говорят также, что B содержится в A или B включено в A, при этом пишут В А или А В. Символ называется знаком включения (точнее, нестрого включения).
Согласно данному определению 1.4 подмножества, каждое множество является подмножеством самого себя, то есть ( A) А А. Кроме того, считается, что пустое множество есть подмножество любого множества A: ( A) А.
Различают два вида подмножеств множества А.
Определение 1.5. Пустое множество и множество А называются несобственными подмножествами множества А.
Определение 1.6. Любые подмножества множества А, отличные от А и , называются собственными подмножествами множества А.
Определение 1.7. Множества A и B, состоящие из одних и тех же элементов, называются равными. При этом пишут А = В, в противном случае А ≠ В.
Справедливо следующее утверждение, которое также можно рассматривать в качестве определения равных множеств.
Утверждение 1.1. А = В А B и В А.
Замечание 1.3. Из утверждения 1.1 вытекает способ доказательства равенства двух множеств: если доказать, что каждый элемент из множества A является элементом множества B и каждый элемент из множества B является элементом множества A, то делают вывод, что А = В.
Говорят, что множество B строго включено в множество A или, по-другому, А строго включает B, если В А и В А. В этом случае пишут B A. Символ называется знаком строгого включения.
Пример 1.3. Имеют место следующие строгие включения числовых множеств: N N0 Z Q R C и I R C.
Определение 1.8. Совокупность всех подмножеств множества A называется его булеаном (или множеством-степенью), и обозначается через P(A) (или 2A).
Пример 1.4. Если A = {a, b, c}, то булеан множества А это множество P(A) = {, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.
Для наглядного изображения множеств и их свойств используют так называемые диаграммы Эйлера2 – Венна3. Множество отождествляется с множеством точек на плоскости, лежащих внутри некоторых замкнутых кривых, например окружностей (так называемые круги Эйлера). В частности, универсальное множество U изображается множеством точек некоторого прямоугольника или всей плоскости (рис. 1.1).
1.3. Операции над множествами и их свойства
Определим операции над множествами, с помощью которых можно получать из любых имеющихся множеств новые множества.
1. Объединение (или сумма).
Определение 1.9. Объединением множеств А и В называется множество A B, состоящее из тех и только тех элементов, которые принадлежат хотя бы одному из этих множеств.
То есть, по определению 1.9, A B = {х | х Î А или х Î В}.
Все операции над множествами можно иллюстрировать с помощью диаграмм Эйлера – Венна. Объединение множеств А и В заштриховано и изображено на рис. 1.2.
Заметим, что в объединение двух множеств A и B могут входить элементы из A, не принадлежащие множеству B, элементы из B, не принадлежащие множеству A, и элементы, принадлежащие множествам A и B одновременно. Следовательно, ( A, B) A A B и B A B.