
- •Т. Н. Матыцина е. К. Коржевина линейная алгебра
- •Оглавление
- •Введение
- •1. Множества
- •1.1. Множества и их элементы. Способы задания множеств
- •1.2. Подмножества. Диаграммы Эйлера – Венна
- •1.3. Операции над множествами и их свойства
- •1. Объединение (или сумма).
- •2. Пересечение (или произведение).
- •3. Разность.
- •4. Декартовое произведение (или прямое произведение).
- •Свойства операций над множествами
- •1.4. Метод математической индукции
- •1.5. Комплексные числа
- •Операции над комплексными числами
- •Геометрическая интерпретация комплексных чисел
- •Тригонометрическая форма комплексного числа
- •Действия над комплексными числами в тригонометрической форме
- •3. Возведение в степень.
- •4. Извлечение корня n-ой степени.
- •Показательная форма комплексного числа
- •2. Бинарные отношения
- •2.1. Понятие отношения
- •Способы задания бинарных отношений
- •Операции над бинарными отношениями
- •2.2. Свойства бинарных отношений
- •2.3. Отношение эквивалентности
- •2.4. Функции
- •3. Матрицы и действия над ними
- •3.1. Общие понятия
- •3.2. Основные операции над матрицами и их свойства
- •3.2.1. Сложение однотипных матриц
- •3.2.2. Умножение матрицы на число
- •3.2.3. Умножение матриц
- •3.3. Транспонирование матриц
- •4. Определители квадратных матриц
- •4.1. Определители матриц второго и третьего порядка
- •4.2. Определитель матрицы n-го порядка
- •4.3. Свойства определителей
- •4.4. Практическое вычисление определителей
- •5. Ранг матрицы. Обратная матрица
- •5.1. Понятие ранга матрицы
- •5.2. Нахождение ранга матрицы методом окаймления миноров
- •5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- •5.4. Понятие обратной матрицы и способы ее нахождения
- •Алгоритм нахождения обратной матрицы
- •Нахождение обратной матрицы с помощью элементарных преобразований
- •6. Системы линейных уравнений
- •6.1. Основные понятия и определения
- •6.2. Методы решения систем линейных уравнений
- •6.2.1. Метод Крамера
- •6.2.2. Метод обратной матрицы
- •6.2.3. Метод Гаусса
- •Описание метода Гаусса
- •6.3. Исследование системы линейных уравнений
- •6.4. Однородные системы линейных уравнений
- •Свойства решений однородной системы линейных уравнений
- •Фундаментальный набор решений однородной системы линейных уравнений
- •7. Арифметическое n-мерное векторное пространство
- •7.1. Основные понятия
- •7.2. Линейная зависимость и независимость системы векторов
- •Свойства линейной зависимости системы векторов
- •Единичная система векторов
- •Две теоремы о линейной зависимости
- •7.3. Базис и ранг системы векторов
- •Базис пространства Rn
- •Ранг системы векторов
- •8. Векторные (линейные) пространства
- •8.1. Определение векторного пространства над произвольным полем.
- •Простейшие свойства векторных пространств
- •Линейная зависимость и независимость системы векторов
- •8.2. Подпространства. Линейные многообразия
- •Пересечение и сумма подпространств
- •Линейные многообразия
- •8.3. Базис и размерность векторного пространства
- •8.3.1. Конечномерные векторные пространства
- •Базис конечномерного векторного пространства
- •8.3.2. Базисы и размерности подпространств
- •8.3.3. Координаты вектора относительно данного базиса
- •8.3.4. Координаты вектора в различных базисах
- •8.4 Евклидовы векторные пространства
- •Скалярное произведение в координатах
- •Метрические понятия
- •Процесс ортогонализации
- •Скалярное произведение в ортонормированном базисе
- •Ортогональное дополнение подпространства
- •9. Линейные операторы
- •9.1. Основные понятия и способы задания линейных операторов
- •Способы задания линейных операторов
- •9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- •Матрицы линейного оператора в различных базисах
- •9.3. Подобные матрицы
- •Свойства отношения подобия матриц
- •9.4. Действия над линейными операторами
- •1. Сложение линейных операторов.
- •Свойства сложения линейных операторов
- •9.5. Ядро и образ линейного оператора
- •9.6. Обратимые линейные операторы
- •9.7. Собственные векторы линейного оператора
- •9.7.1. Свойства собственных векторов
- •9.7.2. Характеристический многочлен матрицы
- •9.7.3. Нахождение собственных векторов линейного оператора
- •9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- •9.7.5.Условия, при которых матрица подобна диагональной матрице
- •10. Жорданова нормальная форма матрицы линейного оператора
- •10.1. Понятие λ-матрицы
- •Свойства λ-матрицы
- •10.2. Жорданова нормальная форма
- •10.3.Приведение матрицы к жордановой (нормальной) форме
- •Алгоритм приведения матрицы a к жордановой форме
- •11. Билинейные и квадратичные формы
- •11.1. Билинейные формы
- •Свойства билинейных форм
- •Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- •11.2. Квадратичные формы
- •Приведение квадратичной формы к каноническому виду
- •Закон инерции квадратичных форм
- •Классификация квадратичных форм
- •Необходимое и достаточное условие знакоопределенности квадратичной формы
- •Необходимое и достаточное условие знакопеременности квадратичной формы
- •Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- •Критерий Сильвестра знакоопределенности квадратичной формы
- •Заключение
- •Библиографический список
- •Линейная алгебра
- •156961, Г. Кострома, ул. 1 Мая, 14
8.3.3. Координаты вектора относительно данного базиса
Рассмотрим конечномерное векторное пространство V размерности n, векторы e1, e2, …, en образуют его базис. Пусть a – произвольный вектор пространства V, тогда вектор линейно выражается через векторы базиса, a = 1e1 + 2e2 + … + nen.
Теорема 8.8. Разложение вектора a по векторам базиса производится единственным образом.
Доказательство. Предположим, что вектор a можно разложить по векторам базиса двумя способами:
a = 1e1 + 2e2 + … + nen.
a = '1e1 + '2e2 + … + 'nen.
После вычитания из одного равенства другого, получим
(1 – '1) e1 + (2 – '2)e2 + … + (n – 'n)en = 0,
из чего в силу линейной независимости базисных векторов e1, e2, …, en следует, что 1 – '1 = 0, 2 – '2 = 0, …, n – 'n = 0, а затем что 1 = '1, 2 = '2, …, n = 'n. Таким образом, коэффициенты разложения определяются однозначно. Теорема доказана.
Определение 8.13. Координатами вектора a относительно базиса e1, e2, …, en называются коэффициенты разложения вектора a по базисным векторам.
Координаты
вектора принято записывать или в виде
строки координат (координатной строки)
– (1, 2, …, n),
или в виде координатного столбца:
[a] = .
Пример 8.7.
1) В
пространстве R22
вектор A =
раскладывается
по векторам базиса Е1,
Е2,
Е3,
Е4
следующим образом: А = 2Е1 – Е2 + 4Е3 + 7Е4,
следовательно, координатная строка
этого вектора равна (2, –1, 4, 7).
2) В
пространстве выбран базис
а1 = (1,
3, –1), а2 = (–2,
1, 1),
а3 = (2,
–2, –1). Найти координаты вектора a = (3,
0, –2) относительно базиса а1,
а2,
а3.
Векторное равенство a = x1а1 + x2а2 + x3а3
перепишем в виде системы линейных
уравнений
Решая
эту систему, получим x1 = 1,
x2 = 1,
x3 = 2,
следовательно, координатная строка
вектора a
равна (1, 1, 2).
Каждому вектору a из произвольного векторного пространства V, в котором задан базис e1, e2, …, en, сопоставляется строка (или столбец) координат (1, 2, …, n), причем единственным образом. Если V пространство размерности n, то строка координат принадлежит пространству Rn, то есть возникает отображение: V Rn. Обратно, по строке координат (1, 2, …, n), (по вектору из Rn) единственным образом можно построить вектор a = 1e1 + 2e2+ … + nen. Для этого отображения верна следующая теорема.
Теорема 8.9. Если векторы а1, а2, …, аm из произвольного пространства V образуют линейно независимую систему векторов, то их строки (или столбцы) координат тоже линейно независимы.
8.3.4. Координаты вектора в различных базисах
Пусть V – n-мерное векторное пространство, в котором заданы два базиса: e1, e2, …, en – старый базис, e'1, e'2, …, e'n – новый базис. У произвольного вектора a есть координаты в каждом из них:
a = 1e1 + 2e2+ … + nen;
a = '1e'1 + '2e'2+ … + 'ne'n.
Для того чтобы установить связь между столбцами координат вектора a в старом и новом базисах, надо разложить векторы нового базиса по векторам старого базиса:
e'1 = 11e1 + 21e2+ … + n1en,
e'2 = 12e1 + 22e2+ … + n2en,
………………………………..
e'n = 1ne1 + 2ne2+ … + nnen.
Определение 8.14. Матрицей перехода от старого базиса к новому базису называется матрица, составленная из координат векторов нового базиса относительно старого базиса, записанных в столбцы, т. е.
T = .
Столбцы матрицы T – это координаты базисных, а значит, линейно независимых, векторов, следовательно, эти столбцы линейно независимы. Матрица с линейно независимыми столбцами является невырожденной, ее определитель не равен нулю и для матрицы T существует обратная матрица T –1.
Обозначим столбцы координат вектора a в старом и новом базисах, соответственно, как [a] и [a]'. С помощью матрицы перехода устанавливается связь между [a] и [a]'.
Теорема 8.10. Столбец координат вектора a в старом базисе равен произведению матрицы перехода на столбец координат вектора a в новом базисе, то есть [a] = T [a]'.
Следствие. Столбец координат вектора a в новом базисе равен произведению матрицы, обратной матрице перехода, на столбец координат вектора a в старом базисе, то есть [a]' = T –1[a].
Пример 8.8. Составить матрицу перехода от базиса e1, e2, к базису e'1, e'2, где e'1 = 3e1 + e2, e'2 = 5e1 + 2e2, и найти координаты вектора a = 2e'1 – 4e'2 в старом базисе.
Решение.
Координатами новых базисных векторов
относительно старого базиса являются
строки (3, 1) и (5, 2), тогда матрица
T
примет вид
.
Так как [a]' =
,
то [a] =
=
.
Пример 8.9. Даны два базиса e1, e2 – старый базис, e'1, e'2 – новый базис, причем e'1 = 3e1 + e2, e'2 = 5e1 + 2e2. Найти координаты вектора a = 2e1 – e2 в новом базисе.
Решение.
1 способ.
По условию даны координаты вектора а
в старом базисе: [a] = .
Найдем
матрицу перехода от старого базиса e1,
e2
к новому базису e'1,
e'2.
Получим матрицу Т =
для нее найдем обратную матрицу T –1 =
.
Тогда согласно следствию из теоремы 8.10
имеем [a]' = T –1[a] =
=
.
2 способ. Так как e'1, e'2 базис, то вектор а раскладывается по базисным векторам следующим образом a = k1e'1 – k2e'2. Найдем числа k1 и k2 – это и будут координаты вектора а в новом базисе.
a = k1e'1 – k2e'2 = k1(3e1 + e2) – k2(5e1 + 2e2) =
= e1(3k1 + 5k2) + e2(k1 + 2k2) = 2e1 – e2.
Так
как координаты одного и того же вектора
в данном базисе определяется однозначно,
то имеем систему:
Решая данную систему, получим k1 = 9
и k2 = –5,
т. о. [a]' =
.